WebGL: Zooming to and stopping at object in a scene in WebGL - webgl

We've created a WebGl application which displays a scene containing multiple objects. The entire scene can be rotated in multiple directions. The application requires the user to be able to zoom up to but NOT thru the object. I know this functionality can be implemented using webgl frameworks such as Three.js and SceneJs. Unfortunately, our application is not leveraging a framework. Is there a way to implement the zoom functionality described here using webgl only? Note: I don't believe object picking will work for us since the user is not required to select any object in the scene. Thanks for your help.

Off the top of my head.
First off you need to know the size of each object in world space. For example if one object is 10 units big and another is 100 units big you probably want to be a different distance from the 100 unit object as the 10 unit object. By world space I also mean if you're scaling the 10 unit object by 9 then in world space it would be 90 units big and again you'd want to get a different distance away then if it was 10 units
You generally compute the size of an object in local space by computing the extents of its vertices. Just go through all the vertices and keep track of the min and max values in x, y, and z. Whether you want to take the biggest value from the object's origin or compute an actual center point is up to you.
So, given the size we can compute how far away you need to be to see the entire object. For the standard perspective matrix you can just work backward. If you know your object is 10 units big then you need to fit 10 units in your frustum. You'd probably actually pick something like 14 units (say size * 1.4) so there's some space around the object.
We know halfFovy, halfSizeToFitOnScreen, we need to compute distance
sohcahtoa
tangent = opposite / adjacent
opposite = halfsizeToFitOnScreen
adjacent = distance
tangent = Math.tan(halfFovY)
Therefore
tangent = sizeToFitOnScreen / distance
tangent * distance = sizeToFitOnScreen
distance = sizeToFitOnScreen / tangent
distance = sizeToFitOnScreen / Math.tan(halfFovY)
So now we know the camera needs to be distance away from the object. There's an entire sphere that's distance away from the object. Where you pick on that sphere is up to you. Assuming you go from where the camera currently is you can compute the direction from the object to the camera
direction = normalize(cameraPos - objectPos)
Now you can compute a point distance away in that direction.
desiredCameraPosition = direction * distance
Now either put the camera there using some lookAt function
matrix = lookAt(desiredCameraPosition, objectPosition, up)
Or lerp between where the camera currently is to it's new desired position
var m4 = twgl.m4;
var v3 = twgl.v3;
twgl.setAttributePrefix("a_");
var gl = twgl.getWebGLContext(document.getElementById("c"));
var programInfo = twgl.createProgramInfo(gl, ["vs", "fs"]);
var shapes = [
twgl.primitives.createCubeBufferInfo(gl, 2),
twgl.primitives.createSphereBufferInfo(gl, 1, 24, 12),
twgl.primitives.createTruncatedConeBufferInfo(gl, 1, 0, 2, 24, 1),
];
function rand(min, max) {
return min + Math.random() * (max - min);
}
function easeInOut(t, start, end) {
var c = end - start;
if ((t /= 0.5) < 1) {
return c / 2 * t * t + start;
} else {
return -c / 2 * ((--t) * (t - 2) - 1) + start;
}
}
// Shared values
var lightWorldPosition = [1, 8, -10];
var lightColor = [1, 1, 1, 1];
var camera = m4.identity();
var view = m4.identity();
var viewProjection = m4.identity();
var targetNdx = 0;
var targetTimer = 0;
var zoomTimer = 0;
var eye = v3.copy([1, 4, -60]);
var target = v3.copy([0, 0, 0]);
var up = [0, 1, 0];
var zoomScale = 1.4;
var zoomDuration = 2;
var targetChangeInterval = 3;
var oldEye;
var oldTarget;
var newEye;
var newTarget;
var tex = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, tex);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, 2, 2, 0, gl.RGBA, gl.UNSIGNED_BYTE, new Uint8Array([
255,255,255,255,
192,192,192,255,
192,192,192,255,
255,255,255,255]));
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
var objects = [];
var drawObjects = [];
var numObjects = 100;
var baseHue = rand(0, 360);
for (var ii = 0; ii < numObjects; ++ii) {
var uniforms = {
u_lightWorldPos: lightWorldPosition,
u_lightColor: lightColor,
u_diffuseMult: chroma.hsv((baseHue + rand(0, 60)) % 360, 0.4, 0.8).gl(),
u_specular: [1, 1, 1, 1],
u_shininess: 50,
u_specularFactor: 1,
u_diffuse: tex,
u_viewInverse: camera,
u_world: m4.identity(),
u_worldInverseTranspose: m4.identity(),
u_worldViewProjection: m4.identity(),
};
drawObjects.push({
programInfo: programInfo,
bufferInfo: shapes[ii % shapes.length],
uniforms: uniforms,
});
objects.push({
translation: [rand(-50, 50), rand(-50, 50), rand(-50, 50)],
scale: rand(1, 5),
size: 2,
xSpeed: rand(0.2, 0.7),
zSpeed: rand(0.2, 0.7),
uniforms: uniforms,
});
}
var then = Date.now() * 0.001;
function render() {
twgl.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.enable(gl.DEPTH_TEST);
gl.enable(gl.CULL_FACE);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
var time = Date.now() * 0.001;
var elapsed = time - then;
then = time;
var radius = 6;
var fovy = 30 * Math.PI / 180;
var projection = m4.perspective(fovy, gl.canvas.clientWidth / gl.canvas.clientHeight, 0.5, 200);
targetTimer -= elapsed;
if (targetTimer <= 0) {
targetTimer = targetChangeInterval;
zoomTimer = 0;
targetNdx = (targetNdx + 1) % objects.length;
oldEye = v3.copy(eye);
oldTarget = v3.copy(target);
var targetObj = objects[targetNdx];
newTarget = targetObj.translation;
var halfSize = targetObj.size * targetObj.scale * zoomScale * 0.5;
var distance = halfSize / Math.tan(fovy * 0.5);
var direction = v3.normalize(v3.subtract(eye, newTarget));
newEye = v3.add(newTarget, v3.mulScalar(direction, distance));
}
zoomTimer += elapsed;
var lerp = easeInOut(Math.min(1, zoomTimer / zoomDuration), 0, 1);
eye = v3.lerp(oldEye, newEye, lerp);
target = v3.lerp(oldTarget, newTarget, lerp);
m4.lookAt(eye, target, up, camera);
m4.inverse(camera, view);
m4.multiply(projection, view, viewProjection);
objects.forEach(function(obj, ndx) {
var uni = obj.uniforms;
var world = uni.u_world;
m4.identity(world);
m4.translate(world, obj.translation, world);
m4.rotateX(world, time * obj.xSpeed, world);
m4.rotateZ(world, time * obj.zSpeed, world);
m4.scale(world, [obj.scale, obj.scale, obj.scale], world);
m4.transpose(m4.inverse(world, uni.u_worldInverseTranspose), uni.u_worldInverseTranspose);
m4.multiply(viewProjection, uni.u_world, uni.u_worldViewProjection);
});
twgl.drawObjectList(gl, drawObjects);
requestAnimationFrame(render);
}
render();
body {
margin: 0;
}
canvas {
width: 100vw;
height: 100vh;
display: block;
}
<script src="//twgljs.org/dist/4.x/twgl-full.min.js"></script>
<script src="//cdnjs.cloudflare.com/ajax/libs/chroma-js/0.6.3/chroma.min.js"></script>
<canvas id="c"></canvas>
<script id="vs" type="notjs">
uniform mat4 u_worldViewProjection;
uniform vec3 u_lightWorldPos;
uniform mat4 u_world;
uniform mat4 u_viewInverse;
uniform mat4 u_worldInverseTranspose;
attribute vec4 a_position;
attribute vec3 a_normal;
attribute vec2 a_texcoord;
varying vec4 v_position;
varying vec2 v_texCoord;
varying vec3 v_normal;
varying vec3 v_surfaceToLight;
varying vec3 v_surfaceToView;
void main() {
v_texCoord = a_texcoord;
v_position = (u_worldViewProjection * a_position);
v_normal = (u_worldInverseTranspose * vec4(a_normal, 0)).xyz;
v_surfaceToLight = u_lightWorldPos - (u_world * a_position).xyz;
v_surfaceToView = (u_viewInverse[3] - (u_world * a_position)).xyz;
gl_Position = v_position;
}
</script>
<script id="fs" type="notjs">
precision mediump float;
varying vec4 v_position;
varying vec2 v_texCoord;
varying vec3 v_normal;
varying vec3 v_surfaceToLight;
varying vec3 v_surfaceToView;
uniform vec4 u_lightColor;
uniform vec4 u_diffuseMult;
uniform sampler2D u_diffuse;
uniform vec4 u_specular;
uniform float u_shininess;
uniform float u_specularFactor;
vec4 lit(float l ,float h, float m) {
return vec4(1.0,
abs(l),//max(l, 0.0),
(l > 0.0) ? pow(max(0.0, h), m) : 0.0,
1.0);
}
void main() {
vec4 diffuseColor = texture2D(u_diffuse, v_texCoord) * u_diffuseMult;
vec3 a_normal = normalize(v_normal);
vec3 surfaceToLight = normalize(v_surfaceToLight);
vec3 surfaceToView = normalize(v_surfaceToView);
vec3 halfVector = normalize(surfaceToLight + surfaceToView);
vec4 litR = lit(dot(a_normal, surfaceToLight),
dot(a_normal, halfVector), u_shininess);
vec4 outColor = vec4((
u_lightColor * (diffuseColor * litR.y +
u_specular * litR.z * u_specularFactor)).rgb,
diffuseColor.a);
gl_FragColor = outColor;
}
</script>

Related

Circle not rendering to canvas

I'm trying to render a circle using WebGL. I only need to translate the circle by a dynamic pixel value, so I used some translation logic from a tutorial converting pixel space to clipspace and put that in the vertex shader. I'm also using the common TRIANGLE_FAN technique to make the circle.
I currently can't see anything on the canvas; it renders as a white screen and there is no circle anywhere. I only want the circle to have a radius of 1px.
//shaders
const glsl = (x) => x;
const vertex = glsl`
attribute vec2 a_position;
uniform vec2 u_resolution;
uniform vec2 u_translation;
void main() {
//add in the translation
vec2 position = a_position + u_translation;
// convert the circle points from pixels to 0.0 to 1.0
vec2 zeroToOne = a_position / u_resolution;
// convert from 0->1 to 0->2
vec2 zeroToTwo = zeroToOne * 2.0;
// convert from 0->2 to -1->+1 (clipspace)
vec2 clipSpace = zeroToTwo - 1.0;
gl_Position = vec4(clipSpace * vec2(1, -1), 0, 1);
}
`;
const fragment = glsl`
precision mediump float;
uniform vec4 u_color;
void main() {
gl_FragColor = u_color;
}
`;
function main() {
// Get A WebGL context
var canvas = document.querySelector("#c");
var gl = canvas.getContext("webgl");
if (!gl) {
return;
}
const opacity = 0.5; //opacity will be dynamic
const color = [0, 0, 0, opacity];
const translation = [50, 50]; //this translation value with be dynamic but using [50,50] for demo purposes
// Use our boilerplate utils to compile the shaders and link into a program
var program = webglUtils.createProgramFromScripts(gl, [vertex, fragment]);
// look up where the vertex data needs to go.
var positionAttributeLocation = gl.getAttribLocation(program, "a_position");
// look up uniform locations
var resolutionUniformLocation = gl.getUniformLocation(program,"u_resolution");
var translationUniformLocation = gl.getUniformLocation(program, "u_translation");
var colorUniformLocation = gl.getUniformLocation(program, "u_color");
// Create a buffer to put three 2d clip space points in
var positionBuffer = gl.createBuffer();
// Bind it to ARRAY_BUFFER (think of it as ARRAY_BUFFER = positionBuffer)
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
const positions = [
0.0, 0.0 //circle center vertex
];
const stops = 100;
for (i = 0; i < stops; i++){
positions.push(Math.cos(i * 2 * Math.PI/stops)); // x coord
positions.push(Math.sin(i * 2 * Math.PI/stops)); // y coord
}
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(positions), gl.STATIC_DRAW);
//sets canvas width and height to current size of canvas as specified in css
webglUtils.resizeCanvasToDisplaySize(gl.canvas);
// Tell WebGL how to convert from clip space to pixels
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
// Clear the canvas
gl.clearColor(0, 0, 0, 0);
gl.clear(gl.COLOR_BUFFER_BIT);
// Tell it to use our program (pair of shaders)
gl.useProgram(program);
// Turn on the attribute
gl.enableVertexAttribArray(positionAttributeLocation);
// Bind the position buffer.
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
// Tell the attribute how to get data out of positionBuffer (ARRAY_BUFFER)
var size = 2; // 2 components per stop
var type = gl.FLOAT; // the data is 32bit floats
var normalize = false; // don't normalize the data
var stride = 0; // 0 = move forward size * sizeof(type) each iteration to get the next position
var offset = 0; // start at the beginning of the buffer
gl.vertexAttribPointer(
positionAttributeLocation,
size,
type,
normalize,
stride,
offset
);
// set the resolution
gl.uniform2f(resolutionUniformLocation, gl.canvas.width, gl.canvas.height);
//set the translation
gl.uniform2fv(translationUniformLocation, translation);
//set the color
gl.uniform4fv(colorUniformLocation, color);
// draw
var primitiveType = gl.TRIANGLE_FAN;
var offset = 0;
const count = stops + 1; //adding one for center of circle
gl.drawArrays(primitiveType, offset, count);
}
main();
<script src="https://webglfundamentals.org/webgl/resources/webgl-utils.js"></script>
<canvas id="c"></canvas>
There are 3 problems with the code above
It's calling createProgramFromScripts instead of createProgramFromSources
The shader doesn't use u_translation
Here's the first 2 lines
//add in the translation
vec2 position = a_position + u_translation;
// convert the circle points from pixels to 0.0 to 1.0
vec2 zeroToOne = a_position / u_resolution;
that second line is using a_position instead of position
The fan is missing the last triangle.
You probably want <= stops in your for loop
I'd strongly encourge you to follow the tutorials there and get comfortable using matrices. They start with shader code like the code above uses but progress into replacing it with matrices. Even for pixels matrices enable many things that will be hard without.

How to create a histogram in WebGL2 using 16 bit data?

var gl, utils, pseudoImg, vertices;
var img = null;
document.addEventListener('DOMContentLoaded', () => {
utils = new WebGLUtils();
vertices = utils.prepareVec2({x1 : -1.0, y1 : -1.0, x2 : 1.0, y2 : 1.0});
gl = utils.getGLContext(document.getElementById('canvas'));
var program = utils.getProgram(gl, 'render-vs', 'render16bit-fs');
var histogramProgram = utils.getProgram(gl, 'histogram-vs', 'histogram-fs');
var sortProgram = utils.getProgram(gl, 'sorting-vs', 'sorting-fs');
var showProgram = utils.getProgram(gl, 'showhistogram-vs', 'showhistogram-fs');
utils.activateTextureByIndex(gl, showProgram, 'histTex', 3);
utils.activateTextureByIndex(gl, showProgram, 'maxTex', 4);
utils.activateTextureByIndex(gl, sortProgram, 'tex3', 2);
utils.activateTextureByIndex(gl, histogramProgram, 'tex2', 1);
utils.activateTextureByIndex(gl, program, 'u_texture', 0);
var vertexBuffer = utils.createAndBindBuffer(gl, vertices);
var imageTexture;
computeHistogram = (AR, myFB) => {
gl.useProgram(histogramProgram);
var width = AR.width;
var height = AR.height;
var numOfPixels = width * height;
var pixelIds = new Float32Array(numOfPixels);
for (var i = 0; i < numOfPixels; i++) {
pixelIds[i] = i;
}
var histogramFbObj = utils.createTextureAndFramebuffer(gl, {
format : gl.RED,
internalFormat : gl.R32F,
filter : gl.NEAREST,
dataType : gl.FLOAT,
mipMapST : gl.CLAMP_TO_EDGE,
width : 256,
height : 256
});
gl.bindFramebuffer(gl.FRAMEBUFFER, histogramFbObj.fb);
gl.viewport(0, 0, 256, 256);
var pixelBuffer = utils.createAndBindBuffer(gl, pixelIds, true);
gl.blendFunc(gl.ONE, gl.ONE);
gl.enable(gl.BLEND);
utils.linkAndSendDataToGPU(gl, histogramProgram, 'pixelIds', pixelBuffer, 1);
gl.uniform2fv(gl.getUniformLocation(histogramProgram, 'imageDimensions'), [width, height]);
utils.sendTextureToGPU(gl, myFB.tex, 1);
gl.drawArrays(gl.POINTS, 0, numOfPixels);
gl.blendFunc(gl.ONE, gl.ZERO);
gl.disable(gl.BLEND);
return histogramFbObj;
};
sortHistogram = (histogramFbObj) => {
gl.useProgram(sortProgram);
utils.linkAndSendDataToGPU(gl, sortProgram, 'vertices', vertexBuffer, 2);
var sortFbObj = utils.createTextureAndFramebuffer(gl, {
format : gl.RED,
internalFormat : gl.R32F,
filter : gl.NEAREST,
dataType : gl.FLOAT,
mipMapST : gl.CLAMP_TO_EDGE,
width : 1,
height : 1
});
gl.bindFramebuffer(gl.FRAMEBUFFER, sortFbObj.fb);
gl.viewport(0, 0, 1, 1);
utils.sendTextureToGPU(gl, histogramFbObj.tex, 2);
gl.drawArrays(gl.TRIANGLES, 0, 6);
return sortFbObj;
};
showHistogram = (histFb, sortFb) => {
gl.useProgram(showProgram);
utils.linkAndSendDataToGPU(gl, showProgram, 'vertices', vertexBuffer, 2);
utils.sendTextureToGPU(gl, histFb.tex, 3);
utils.sendTextureToGPU(gl, sortFb.tex, 4);
gl.uniform2fv(gl.getUniformLocation(showProgram, 'imageDimensions'), [gl.canvas.width, gl.canvas.height]);
gl.drawArrays(gl.TRIANGLES, 0, 6);
};
showTexture = (AR) => {
imageTexture = utils.createAndBindTexture(gl, {
filter : gl.NEAREST,
mipMapST : gl.CLAMP_TO_EDGE,
dataType : gl.UNSIGNED_SHORT,
format : gl.RGBA_INTEGER,
internalFormat : gl.RGBA16UI,
img : AR.img,
width : AR.width,
height : AR.height
});
gl.useProgram(program);
var myFB = utils.createTextureAndFramebuffer(gl, {
filter : gl.NEAREST,
mipMapST : gl.CLAMP_TO_EDGE,
dataType : gl.UNSIGNED_BYTE,
format : gl.RGBA,
internalFormat : gl.RGBA,
width : AR.width,
height : AR.height,
});
gl.bindFramebuffer(gl.FRAMEBUFFER, myFB.fb);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
utils.linkAndSendDataToGPU(gl, program, 'vertices', vertexBuffer, 2);
gl.uniform1f(gl.getUniformLocation(program, 'flipY'), 1.0);
utils.sendTextureToGPU(gl, imageTexture, 0);
gl.drawArrays(gl.TRIANGLES, 0, 6);
var fb1 = computeHistogram(AR, myFB);
var fb2 = sortHistogram(fb1);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
showHistogram(fb1, fb2);
};
var w = 128;
var h = 128;
var size = w * h * 4;
var img = new Uint16Array(size); // need Uint16Array
for (var i = 0; i < img.length; i += 4) {
img[i + 0] = 65535; // r
img[i + 1] = i/64 * 256; // g
img[i + 2] = 0; // b
img[i + 3] = 65535; // a
}
showTexture({
img : img,
width : w,
height : h
});
});
<script id="render16bit-fs" type="not-js">
#version 300 es
precision highp float;
uniform highp usampler2D tex;
in vec2 texcoord; // receive pixel position from vertex shader
out vec4 fooColor;
void main() {
uvec4 unsignedIntValues = texture(tex, texcoord);
vec4 floatValues0To65535 = vec4(unsignedIntValues);
vec4 colorValues0To1 = floatValues0To65535;
fooColor = colorValues0To1;
}
</script>
<script type="not-js" id="render-vs">
#version 300 es
in vec2 vertices;
out vec2 texcoord;
uniform float flipY;
void main() {
texcoord = vertices.xy * 0.5 + 0.5;
gl_Position = vec4(vertices.x, vertices.y * flipY, 0.0, 1.0);
}
</script>
<script type="not-js" id="histogram-vs">
#version 300 es
in float pixelIds; //0,1,2,3,4,.......width*height
uniform sampler2D tex2;
uniform vec2 imageDimensions;
void main () {
vec2 pixel = vec2(mod(pixelIds, imageDimensions.x), floor(pixelIds / imageDimensions.x));
vec2 xy = pixel/imageDimensions;
float pixelValue = texture(tex2, xy).r;//Pick Pixel value from GPU texture ranges from 0-65535
float xDim = mod(pixelValue, 255.0)/256.0;
float yDim = floor(pixelValue / 255.0)/256.0;
float xVertex = (xDim*2.0) - 1.0;//convert 0.0 to 1.0 -> -1.0 -> 1.0, it will increment because we have used gl.blendFunc
float yVertex = 1.0 - (yDim*2.0);
gl_Position = vec4(xVertex, yVertex, 0.0, 1.0);
gl_PointSize = 1.0;
}
</script>
<script type="not-js" id="histogram-fs">
#version 300 es
precision mediump float;
out vec4 fcolor;
void main() {
fcolor = vec4(1.0, 1.0, 1.0, 1.0);
}
</script>
<script type="not-js" id="sorting-vs">
#version 300 es
in vec2 vertices;
void main () {
gl_Position = vec4(vertices, 0.0, 1.0);
}
</script>
<script type="not-js" id="sorting-fs">
#version 300 es
precision mediump float;
out vec4 fcolor;
uniform sampler2D tex3;
const int MAX_WIDTH = 65536;
void main() {
vec4 maxColor = vec4(0.0);
for (int i = 0; i < MAX_WIDTH; i++) {
float xDim = mod(float(i), 256.0)/256.0;
float yDim = floor(float(i) / 256.0)/256.0;
vec2 xy = vec2(xDim, yDim);
vec4 currPixel = texture(tex3, xy).rrra;
maxColor = max(maxColor, currPixel);
}
fcolor = vec4(maxColor);
}
</script>
<script type="not-js" id="showhistogram-vs">
#version 300 es
in vec2 vertices;
void main () {
gl_Position = vec4(vertices, 0.0, 1.0);
}
</script>
<script type="not-js" id="showhistogram-fs">
#version 300 es
precision mediump float;
uniform sampler2D histTex, maxTex;
uniform vec2 imageDimensions;
out vec4 fcolor;
void main () {
// get the max color constants
vec4 maxColor = texture(maxTex, vec2(0));
// compute our current UV position
vec2 uv = gl_FragCoord.xy / imageDimensions;
vec2 uv2 = gl_FragCoord.xy / vec2(256.0, 256.0);
// Get the history for this color
vec4 hist = texture(histTex, uv2);
// scale by maxColor so scaled goes from 0 to 1 with 1 = maxColor
vec4 scaled = hist / maxColor;
// 1 > maxColor, 0 otherwise
vec4 color = step(uv2.yyyy, scaled);
fcolor = vec4(color.rgb, 1);
}
</script>
<canvas id="canvas"></canvas>
<script type="text/javascript">
class WebGLUtils {
getGLContext = (canvas, version) => {
canvas.width = window.innerWidth * 0.99;
canvas.height = window.innerHeight * 0.85;
var gl = canvas.getContext(version ? 'webgl' : 'webgl2');
const ext = gl.getExtension("EXT_color_buffer_float");
if (!ext) {
console.log("sorry, can't render to floating point textures");
}
gl.clearColor(0, 0, 0, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT|gl.DEPTH_BUFFER_BIT);
gl.lineWidth(0.5);
return gl;
};
clear = (gl) => {
gl.clear(gl.COLOR_BUFFER_BIT|gl.DEPTH_BUFFER_BIT);
};
getShader = (gl, type, shaderText) => {
var vfs = gl.createShader(type);
gl.shaderSource(vfs, shaderText);
gl.compileShader(vfs);
if (!gl.getShaderParameter(vfs, gl.COMPILE_STATUS)) {
console.error(gl.getShaderInfoLog(vfs));
}
return vfs;
};
getProgram = (gl, vertexShader, fragmentShader) => {
var program = gl.createProgram();
gl.attachShader(program, this.getShader(gl, gl.VERTEX_SHADER, document.getElementById(vertexShader).text.trim()));
gl.attachShader(program, this.getShader(gl, gl.FRAGMENT_SHADER, document.getElementById(fragmentShader).text.trim()));
gl.linkProgram(program);
if (!gl.getProgramParameter(program, gl.LINK_STATUS)) {
console.error(gl.getProgramInfoLog(program));
}
return program;
};
createAndBindBuffer = (gl, relatedVertices, isNotJSArray) => {
var buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, isNotJSArray ? relatedVertices : new Float32Array(relatedVertices), gl.STATIC_DRAW);
gl.bindBuffer(gl.ARRAY_BUFFER, null);
return buffer;
};
createAndBindTexture = (gl, _) => {
var texBuffer = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texBuffer);
if (_.img.width) {
gl.texImage2D(gl.TEXTURE_2D, 0, _.internalFormat, _.format, _.dataType, _.img);
} else {
gl.texImage2D(gl.TEXTURE_2D, 0, _.internalFormat, _.width, _.height, 0, _.format, _.dataType, _.img);
}
// set the filtering so we don't need mips
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, _.filter);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, _.filter);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, _.mipMapST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, _.mipMapST);
gl.bindTexture(gl.TEXTURE_2D, null);
return texBuffer;
};
createTextureAndFramebuffer = (gl, _) => {
const tex = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, tex);
gl.texImage2D(gl.TEXTURE_2D, 0, _.internalFormat, _.width, _.height, 0, _.format, _.dataType, null);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, _.filter);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, _.filter);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, _.mipMapST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, _.mipMapST);
const fb = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, fb);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, tex, 0);
const status = gl.checkFramebufferStatus(gl.FRAMEBUFFER);
console.log(`can ${status === gl.FRAMEBUFFER_COMPLETE ? "" : "NOT "}render to R32`);
return {tex: tex, fb: fb};
};
linkAndSendDataToGPU = (gl, program, linkedVariable, buffer, dimensions) => {
var vertices = gl.getAttribLocation(program, linkedVariable);
gl.enableVertexAttribArray(vertices);
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.vertexAttribPointer(vertices, dimensions, gl.FLOAT, gl.FALSE, 0, 0);
return vertices;
};
sendDataToGPU = (gl, buffer, vertices, dimensions) => {
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.vertexAttribPointer(vertices, dimensions, gl.FLOAT, gl.FALSE, 0, 0);
};
sendTextureToGPU = (gl, tex, index) => {
gl.activeTexture(gl.TEXTURE0 + index);
gl.bindTexture(gl.TEXTURE_2D, tex);
};
calculateAspectRatio = (img, gl) => {
var cols = img.width;
var rows = img.height;
var imageAspectRatio = cols / rows;
var ele = gl.canvas;
var windowWidth = ele.width;
var windowHeight = ele.height;
var canvasAspectRatio = windowWidth / windowHeight;
var renderableHeight, renderableWidth;
var xStart, yStart;
/// If image's aspect ratio is less than canvas's we fit on height
/// and place the image centrally along width
if(imageAspectRatio < canvasAspectRatio) {
renderableHeight = windowHeight;
renderableWidth = cols * (renderableHeight / rows);
xStart = (windowWidth - renderableWidth) / 2;
yStart = 0;
}
/// If image's aspect ratio is greater than canvas's we fit on width
/// and place the image centrally along height
else if(imageAspectRatio > canvasAspectRatio) {
renderableWidth = windowWidth;
renderableHeight = rows * (renderableWidth / cols);
xStart = 0;
yStart = ( windowHeight - renderableHeight) / 2;
}
///keep aspect ratio
else {
renderableHeight = windowHeight ;
renderableWidth = windowWidth;
xStart = 0;
yStart = 0;
}
return {
y2 : yStart + renderableHeight,
x2 : xStart + renderableWidth,
x1 : xStart,
y1 : yStart
};
};
convertCanvasCoordsToGPUCoords = (canvas, AR) => {
//GPU -> -1, -1, 1, 1
//convert to 0 -> 1
var _0To1 = {
y2 : AR.y2/canvas.height,
x2 : AR.x2/canvas.width,
x1 : AR.x1/canvas.width,
y1 : AR.y1/canvas.height
};
//Convert -1 -> 1
return {
y2 : -1 + _0To1.y2 * 2.0,
x2 : -1 + _0To1.x2 * 2.0,
x1 : -1 + _0To1.x1 * 2.0,
y1 : -1 + _0To1.y1 * 2.0
};
};
//convert -1->+1 to 0.0->1.0
convertVertexToTexCoords = (x1, y1, x2, y2) => {
return {
y2 : (y2 + 1.0)/2.0,
x2 : (x2 + 1.0)/2.0,
x1 : (x1 + 1.0)/2.0,
y1 : (y1 + 1.0)/2.0
};
};
activateTextureByIndex = (gl, program, gpuRef, gpuTextureIndex) => {
gl.useProgram(program);
gl.uniform1i(gl.getUniformLocation(program, gpuRef), gpuTextureIndex);
};
prepareVec4 = (_) => {
return [_.x1, _.y1, 0.0, 1.0,
_.x2, _.y1, 0.0, 1.0,
_.x1, _.y2, 0.0, 1.0,
_.x2, _.y1, 0.0, 1.0,
_.x1, _.y2, 0.0, 1.0,
_.x2, _.y2, 0.0, 1.0];
};
prepareVec2 = (_) => {
return [_.x1, _.y1,
_.x2, _.y1,
_.x1, _.y2,
_.x2, _.y1,
_.x1, _.y2,
_.x2, _.y2];
};
};
</script>
I am able to render a 8 bit histogram in both WebGL1 and WebGL2 using this code. But I need to generate a 16 bit histogram using 16 bit texture.
Here's how am sending the texture to GPU:
var tex = gl.createTexture(); // create empty texture
gl.bindTexture(gl.TEXTURE_2D, tex);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texImage2D(
gl.TEXTURE_2D, // target
0, // mip level
gl.RGBA16UI, // internal format -> gl.RGBA16UI
w, h, // width and height
0, // border
gl.RGBA_INTEGER, //format -> gl.RGBA_INTEGER
gl.UNSIGNED_SHORT, // type -> gl.UNSIGNED_SHORT
img // texture data
);
So, take the working example in mind, I am stuck with few things :
1) How to create a 65536 X 1 framebuffer/texture to keep the 16 bit histogram as WebGL clearly says : WebGL: INVALID_VALUE: texImage2D: width or height out of range. Can we try a 256 x 256 framebuffer? I tried but stuck in point no. 2 below.
2) How to read through the pixels inside the vertex shader in case of 16 bit, below code is for 8-bit data, will it work for 16 bit as well? As I can't debug, so can't say whether it works or not:
<script id="hist-vs" type="not-js">
attribute float pixelId;
uniform vec2 u_resolution;
uniform sampler2D u_texture;
uniform vec4 u_colorMult;
void main() {
// based on an id (0, 1, 2, 3 ...) compute the pixel x, y for the source image
vec2 pixel = vec2(mod(pixelId, u_resolution.x), floor(pixelId / u_resolution.x));
// compute corresponding uv center of that pixel
vec2 uv = (pixel + 0.5) / u_resolution;
// get the pixels but 0 out channels we don't want
vec4 color = texture2D(u_texture, uv) * u_colorMult;
// add up all the channels. Since 3 are zeroed out we'll get just one channel
float colorSum = color.r + color.g + color.b + color.a;
// set the position to be over a single pixel in the 256x1 destination texture
gl_Position = vec4((colorSum * 255.0 + 0.5) / 256.0 * 2.0 - 1.0, 0.5, 0, 1);
gl_PointSize = 1.0;
}
</script>
If you just want answers to your 2 questions then
1) How to create a 65536 X 1 framebuffer/texture to keep the 16 bit histogram as WebGL clearly says : WebGL: INVALID_VALUE: texImage2D: width or height out of range. Can we try a 256 x 256 framebuffer?
yes, you'd make 256x256 texture if you want to know the totals for each of the 65536 possible values
2) How to read through the pixels inside the vertex shader in case of 16 bit, below code is for 8-bit data, will it work for 16 bit as well? As I can't debug, so can't say whether it works or not:
Of course you can debug. You try it and see if the results are correct. If they aren't you look at your code and or the error messages and try to figure out why. That's called debugging. Make a 1x1 texture, call your function, check if the histogram has the correct count of 1 for that 1x1 pixel input by calling gl.readPixels. Then try 2x1 or 2x2.
In any case you can't read gl.RGBA16UI textures with GLSL 1.0 es. You have to use version 300 es so if you actually want to create a separate bucket for all 65536 values then
Here's some a WebGL2 GLSL 3.00 ES shader that will fill out the totals for values from 0 to 65535 in a 256x256 texture
#version 300 es
uniform usampler2D u_texture;
uniform uvec4 u_colorMult;
void main() {
const int mipLevel = 0;
ivec2 size = textureSize(u_texture, mipLevel);
// based on an id (0, 1, 2, 3 ...) compute the pixel x, y for the source image
vec2 pixel = vec2(
gl_VertexID % size.x,
gl_VertexID / size.x);
// get the pixels but 0 out channels we don't want
uvec4 color = texelFetch(u_texture, pixel, mipLevel) * u_colorMult;
// add up all the channels. Since 3 are zeroed out we'll get just one channel
uint colorSum = color.r + color.g + color.b + color.a;
vec2 outputPixel = vec2(
colorSum % 256u,
colorSum / 256u);
// set the position to be over a single pixel in the 256x256 destination texture
gl_Position = vec4((outputPixel + 0.5) / 256.0 * 2.0 - 1.0, 0, 1);
gl_PointSize = 1.0;
}
Example
Notes:
In WebGL2 you don't need pixelID, you can use gl_VertexID so no need to setup any buffers or attributes. Just call
const numPixels = img.width * img.height;
gl.drawArrays(gl.POINTS, 0, numPixels);
You can use textureSize to get the size of a texture so no need to pass it in.
You can use texelFetch to get a single texel(pixel) from a texture. It takes integer pixel coordinates.
To read an unsigned integer texture format like RGBA16UI you have to use a usampler2D otherwise you'll get an error at draw time drawing to use an RGBA16UI texture on a sampler2D (this is how I know you weren't actually using a RGBA16UI texture because you would have gotten an error in the JavaScript console telling you and leading you to change your shader.
You still need to use a floating point texture as the target because the technique used requires blending but blending doesn' work with integer textures (just in case you got the idea to try to use an integer based texture in the framebuffer)

What am I doing wrong getting the angles from voxels?

Apologies in advanced if I don't explain anything clearly, please feel free to ask for clarification. This hobby game project means a lot to me
I am making a voxel rendering engine using webgl. It uses gl.points to draw squares for each voxel. I simply use a projection matrix translated by the cameras position, and then rotated by the cameras rotations.
gl_Position =
uMatrix * uModelMatrix * vec4(aPixelPosition[0],-aPixelPosition[2],aPixelPosition[1],1.0);
The modelviewmatrix is simply just the default mat4.create(), for some reason it would not display anything without one. aPixelPosition is simply the X,Z,Y (in webgl space) of a voxel.
Using something like this:
gl_PointSize = (uScreenSize[1]*0.7) / (gl_Position[2]);
You can set the size of the voxels based on their distance from the camera. Which works pretty well minus one visual error.
(Picture from inside a large hollow cube)
You can see the back wall displays fine (because they all are pointed directly at you) but the walls that are displayed at an angle to you, need to be increased in size.
So I used the dot product between your facing position, and the position of the voxel minus your camera position to get the angle of each block and colored them accordingly.
vPosition=acos(dot( normalize(vec2(sin(uYRotate),-cos(uYRotate))) ,
normalize(vec2(aPixelPosition[0],aPixelPosition[1])-
vec2(uCam[0],uCam[1]))));
then color the blocks with what this returns.
(walls go from black to white depending on their angle to you)
This visual demonstration shows the problem, the walls on the back face all point at an angle to you except for the ones you are directly looking at, the walls on the side of the same face get more and more angled to you.
If I adjust the pointSize to increase with the angle using this, it will fix the visual glitch, but it introduces a new one.
Everything looks good from here, but if you get really close to a wall of blocks and move left and right
There is a fairly noticeable bubbling effect as you scan left and right, because the ones on the side of your view are slightly more at an angle (even though they should face the same way anyways)
So clearly, my math isn't the best. How could I have it so only the walls on the side return an angle? And the ones on the back wall all don't return any angle. Thanks a ton.
I have tried making it so the dot product always checks the voxels X as if it is the same as the cameras, but this just made it so each voxel was colored the same.
I'm not sure you can actually do what you're trying to do which is represent voxel (cubes) and 2D squares (gl.POINTS).
I'm not sure I can demo the issue. Maybe I should write a program to draw this so you can move the camera around but ...
Consider these 6 cubes
Just putting a square at their projected centers won't work
It seems to me there are no squares that will represent those cubes in a generic way that have no gaps and no other issues.
To make sure there are no gaps, every pixel the cube would cover needs to be covered by the square. So, first we can draw the rectangle that covers each cube
Then because gl.POINTS are square we need to expand each area to a square
given the amount of overlap there are going to be all kinds of issues. At extreme angles the size a particular square needs to be to cover the screen space of the cube it represents will get really large. Then, when Z is the same for a bunch of cubes you'll get z-fighting issues. For example the blue square will appear in front of the green square where they overlap making a little notch in the green.
We can see that here
Each green pixel is partially overlapped by the brown pixel that is one column to the right and one voxel down because that POINT is in front and large enough to cover the screen space the brown voxel takes it ends up covering the green pixel to the left and up one.
Here's a shader that follows the algorithm above. For each point in 3D space it assumes a unit cube. It computes the normalized device coordinates (NDC) of each of the 8 points of the cube and uses those to get the min and max NDC coordinates. From that it can compute the gl_PointSize need to cover that large of an area. It then places the point in the center of that area.
'use strict';
/* global window, twgl, requestAnimationFrame, document */
const height = 120;
const width = 30
const position = [];
const color = [];
const normal = [];
for (let z = 0; z < width; ++z) {
for (let x = 0; x < width; ++x) {
position.push(x, 0, z);
color.push(r(0.5), 1, r(0.5));
normal.push(0, 1, 0);
}
}
for (let y = 1; y < height ; ++y) {
for (let x = 0; x < width; ++x) {
position.push(x, -y, 0);
color.push(0.6, 0.6, r(0.5));
normal.push(0, 0, -1);
position.push(x, -y, width - 1);
color.push(0.6, 0.6, r(0.5));
normal.push(0, 0, 1);
position.push(0, -y, x);
color.push(0.6, 0.6, r(0.5));
normal.push(-1, 0, 0);
position.push(width - 1, -y, x);
color.push(0.6, 0.6, r(0.5));
normal.push(1, 0, 0);
}
}
function r(min, max) {
if (max === undefined) {
max = min;
min = 0;
}
return Math.random() * (max - min) + min;
}
const m4 = twgl.m4;
const v3 = twgl.v3;
const gl = document.querySelector('canvas').getContext('webgl');
const vs = `
attribute vec4 position;
attribute vec3 normal;
attribute vec3 color;
uniform mat4 projection;
uniform mat4 modelView;
uniform vec2 resolution;
varying vec3 v_normal;
varying vec3 v_color;
vec2 computeNDC(vec4 p, vec4 off) {
vec4 clipspace = projection * modelView * (p + off);
return clipspace.xy / clipspace.w;
}
void main() {
vec2 p0 = computeNDC(position, vec4(-.5, -.5, -.5, 0));
vec2 p1 = computeNDC(position, vec4( .5, -.5, -.5, 0));
vec2 p2 = computeNDC(position, vec4(-.5, .5, -.5, 0));
vec2 p3 = computeNDC(position, vec4( .5, .5, -.5, 0));
vec2 p4 = computeNDC(position, vec4(-.5, -.5, .5, 0));
vec2 p5 = computeNDC(position, vec4( .5, -.5, .5, 0));
vec2 p6 = computeNDC(position, vec4(-.5, .5, .5, 0));
vec2 p7 = computeNDC(position, vec4( .5, .5, .5, 0));
vec2 minNDC =
min(p0, min(p1, min(p2, min(p3, min(p4, min(p5, min(p6, p7)))))));
vec2 maxNDC =
max(p0, max(p1, max(p2, max(p3, max(p4, max(p5, max(p6, p7)))))));
vec2 minScreen = (minNDC * 0.5 + 0.5) * resolution;
vec2 maxScreen = (maxNDC * 0.5 + 0.5) * resolution;
vec2 rangeScreen = ceil(maxScreen) - floor(minScreen);
float sizeScreen = max(rangeScreen.x, rangeScreen.y);
// sizeSize is now how large the point has to be to touch the
// corners
gl_PointSize = sizeScreen;
vec4 pos = projection * modelView * position;
// clip ourselves
if (pos.x < -pos.w || pos.x > pos.w) {
gl_Position = vec4(0,0,-10,1);
return;
}
// pos is the wrong place to put the point. The correct
// place to put the point is the center of the extents
// of the screen space points
gl_Position = vec4(
(minNDC + (maxNDC - minNDC) * 0.5) * pos.w,
pos.z,
pos.w);
v_normal = mat3(modelView) * normal;
v_color = color;
}
`;
const fs = `
precision highp float;
varying vec3 v_normal;
varying vec3 v_color;
void main() {
vec3 lightDirection = normalize(vec3(1, 2, 3)); // arbitrary light direction
float l = dot(lightDirection, normalize(v_normal)) * .5 + .5;
gl_FragColor = vec4(v_color * l, 1);
gl_FragColor.rgb *= gl_FragColor.a;
}
`;
// compile shader, link, look up locations
const programInfo = twgl.createProgramInfo(gl, [vs, fs]);
// make some vertex data
const bufferInfo = twgl.createBufferInfoFromArrays(gl, {
position,
normal,
color: { numComponents: 3, data: color },
});
let camera;
const eye = [10, 10, 55];
const target = [0, 0, 0];
const up = [0, 1, 0];
const speed = 0.5;
const kUp = 38;
const kDown = 40;
const kLeft = 37;
const kRight = 39;
const kForward = 87;
const kBackward = 83;
const kSlideLeft = 65;
const kSlideRight = 68;
const keyMove = new Map();
keyMove.set(kForward, { ndx: 8, eye: 1, target: -1 });
keyMove.set(kBackward, { ndx: 8, eye: 1, target: 1 });
keyMove.set(kSlideLeft, { ndx: 0, eye: 1, target: -1 });
keyMove.set(kSlideRight, { ndx: 0, eye: 1, target: 1 });
keyMove.set(kLeft, { ndx: 0, eye: 0, target: -1 });
keyMove.set(kRight, { ndx: 0, eye: 0, target: 1 });
keyMove.set(kUp, { ndx: 4, eye: 0, target: -1 });
keyMove.set(kDown, { ndx: 4, eye: 0, target: 1 });
function render() {
twgl.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.enable(gl.DEPTH_TEST);
gl.enable(gl.CULL_FACE);
const fov = Math.PI * 0.25;
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const near = 0.1;
const far = 1000;
const projection = m4.perspective(fov, aspect, near, far);
camera = m4.lookAt(eye, target, up);
const view = m4.inverse(camera);
const modelView = m4.translate(view, [width / -2, 0, width / -2]);
gl.useProgram(programInfo.program);
// calls gl.bindBuffer, gl.enableVertexAttribArray, gl.vertexAttribPointer
twgl.setBuffersAndAttributes(gl, programInfo, bufferInfo);
// calls gl.activeTexture, gl.bindTexture, gl.uniformXXX
twgl.setUniforms(programInfo, {
projection,
modelView,
resolution: [gl.canvas.width, gl.canvas.height],
});
// calls gl.drawArrays or gl.drawElements
twgl.drawBufferInfo(gl, bufferInfo, gl.POINTS);
}
render();
window.addEventListener('keydown', (e) => {
e.preventDefault();
const move = keyMove.get(e.keyCode);
if (move) {
const dir = camera.slice(move.ndx, move.ndx + 3);
const delta = v3.mulScalar(dir, speed * move.target);
v3.add(target, delta, target);
if (move.eye) {
v3.add(eye, delta, eye);
}
render();
}
});
body { margin: 0; }
canvas { width: 100vw; height: 100vh; display: block; }
#i { position: absolute; top: 0; left: 5px; font-family: monospace; }
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<canvas></canvas>
<div id="i">ASWD ⬆️⬇️⬅️➡️</div>
Even on top of that you're going to have other issues using POINTS
the max point size only has to be 1.
The spec says implementation can choose a max size point they support and that at has to be at least 1. In other words, some implementations might only support point sizes of 1. Checking WebGLStats it appears it appears in reality you might be ok but still...
some implementations clip POINTS in correctly and it's unlikely to be fixed
See https://stackoverflow.com/a/56066386/128511

webGL contour color plot on 3D model

I am working on software which is visualising engineering data on a surface of 3D model as color maps. For this I am using WebGL. At the moment I was able to display colors on surface of 3D model.
But now I need to improve visualisation to make sharp transitions between colors (without color interpolation on a surface of triangles).
I am not sure how to do it efficiently.
smooth contours plot
sharp contours plot
It's not clear what you're trying to do. You have not provided enough information to understand how your colors are chosen/computed in the first place.
I can only guess of a couple of solutions that might fit your description
Post process with a posterization type of technique
You could do a simple
gl_FragColor.rgb = floor(gl_FragColor.rgb * numLevels) / numLevels;
Or you could do it in some color space like
// convert to HSV
vec3 hsv = rgb2hsv(gl_FragColor.rgb);
// quantize hue only
hsv.x = floor(hsv.x * numLevels) / numLevels;
// concert back to RGB
gl_FragColor.rgb = hsv2rgb(hsv);
Or you could also do this in your 3D shader, it doesn't have to be post process.
You can find rgb2hsv and hsv2rgb here but of course you could use some other color space.
Example:
const gl = document.querySelector('canvas').getContext('webgl');
const m4 = twgl.m4;
const v3 = twgl.v3;
// used to generate colors
const ctx = document.createElement('canvas').getContext('2d');
ctx.canvas.width = 1;
ctx.canvas.height = 1;
const vs = `
attribute vec4 position;
attribute vec3 normal;
// note: there is no reason this has to come from an attrbute (per vertex)
// it could just as easily come from a texture used in the fragment shader
// for more resolution
attribute vec4 color;
uniform mat4 projection;
uniform mat4 modelView;
varying vec3 v_normal;
varying vec4 v_color;
void main () {
gl_Position = projection * modelView * position;
v_normal = mat3(modelView) * normal;
v_color = color;
}
`;
const fs = `
precision mediump float;
varying vec3 v_normal;
varying vec4 v_color;
uniform float numLevels;
uniform vec3 lightDirection;
vec3 rgb2hsv(vec3 c) {
vec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
vec4 p = mix(vec4(c.bg, K.wz), vec4(c.gb, K.xy), step(c.b, c.g));
vec4 q = mix(vec4(p.xyw, c.r), vec4(c.r, p.yzx), step(p.x, c.r));
float d = q.x - min(q.w, q.y);
float e = 1.0e-10;
return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x);
}
vec3 hsv2rgb(vec3 c) {
c = vec3(c.x, clamp(c.yz, 0.0, 1.0));
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
void main() {
vec3 hsv = rgb2hsv(v_color.rgb);
hsv.x = floor(hsv.x * numLevels) / numLevels;
vec3 rgb = hsv2rgb(hsv);
// fake light
float light = dot(normalize(v_normal), lightDirection) * .5 + .5;
gl_FragColor = vec4(rgb * light, v_color.a);
// uncomment next line to see without hue quantization
// gl_FragColor = v_color;
}
`;
const programInfo = twgl.createProgramInfo(gl, [vs, fs]);
const radius = 5;
const thickness = 2;
const radialDivisions = 32;
const bodyDivisions = 12;
// creates positions, normals, etc...
const arrays = twgl.primitives.createTorusVertices(
radius, thickness, radialDivisions, bodyDivisions);
// add colors for each vertex
const numVerts = arrays.position.length / 3;
const colors = new Uint8Array(numVerts * 4);
for (let i = 0; i < numVerts; ++i) {
const pos = arrays.position.subarray(i * 3, i * 3 + 3);
const dist = v3.distance([3, 1, 3 + Math.sin(pos[0])], pos);
colors.set(hsla(clamp(dist / 10, 0, 1), 1, .5, 1), i * 4);
}
arrays.color = {
numComponents: 4,
data: colors,
};
// calls gl.createBuffer, gl.bindBuffer, gl.bufferData for each
// array in arrays
const bufferInfo = twgl.createBufferInfoFromArrays(gl, arrays);
twgl.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.enable(gl.DEPTH_TEST);
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const halfHeight = 8;
const halfWidth = halfHeight * aspect;
const projection = m4.ortho(
-halfWidth, halfWidth,
-halfHeight, halfHeight,
-2, 2);
const modelView = m4.identity();
m4.rotateX(modelView, Math.PI * .5, modelView);
gl.useProgram(programInfo.program);
// calls gl.bindbuffer, gl.enableVertexAttribArray, gl.vertexAttribPointer
// for each attribute
twgl.setBuffersAndAttributes(gl, programInfo, bufferInfo);
// calls gl.activeTexture, gl.bindTexture, gl.uniformXXX
twgl.setUniforms(programInfo, {
projection,
modelView,
numLevels: 8,
lightDirection: v3.normalize([1, 2, 3]),
});
// calls gl.drawArrays or gl.drawElements
twgl.drawBufferInfo(gl, bufferInfo);
function hsla(h, s, l, a) {
ctx.fillStyle = `hsla(${h * 360 | 0},${s * 100 | 0}%,${l * 100 | 0}%,${a})`;
ctx.fillRect(0, 0, 1, 1);
return ctx.getImageData(0, 0, 1, 1).data;
}
function clamp(v, min, max) {
return Math.min(max, Math.max(min, v));
}
body { margin: 0; }
canvas { width: 100vw; height: 100vh; display: block; }
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<canvas></canvas>
Render in 1 channel, use a lookup table
In this case you'd make an Nx1 texture with your N colors. Then in your shader you'd just compute a gray scale (it's not clear how you're coloring things now) and use that to look up a color from your texture
uniform sampler2D lookupTable; // Nx1 texture set to nearest filtering
float gray = whateverYourDoingNow();
vec4 color = texture2D(lookupTable, vec2((gray, 0.5);
// apply lighting to color
...
Example:
const gl = document.querySelector('canvas').getContext('webgl');
const m4 = twgl.m4;
const v3 = twgl.v3;
const vs = `
attribute vec4 position;
attribute vec3 normal;
// note: there is no reason this has to come from an attrbute (per vertex)
// it could just as easily come from a texture used in the fragment shader
// for more resolution
attribute float hotness; // the data value 0 to 1
uniform mat4 projection;
uniform mat4 modelView;
varying vec3 v_normal;
varying float v_hotness;
void main () {
gl_Position = projection * modelView * position;
v_normal = mat3(modelView) * normal;
v_hotness = hotness;
}
`;
const fs = `
precision mediump float;
varying vec3 v_normal;
varying float v_hotness;
uniform float numColors;
uniform sampler2D lookupTable;
uniform vec3 lightDirection;
void main() {
vec4 color = texture2D(lookupTable, vec2(v_hotness, 0.5));
// fake light
float light = dot(normalize(v_normal), lightDirection) * .5 + .5;
gl_FragColor = vec4(color.rgb * light, color.a);
}
`;
const programInfo = twgl.createProgramInfo(gl, [vs, fs]);
const radius = 5;
const thickness = 2;
const radialDivisions = 32;
const bodyDivisions = 12;
// creates positions, normals, etc...
const arrays = twgl.primitives.createTorusVertices(
radius, thickness, radialDivisions, bodyDivisions);
// add a hotness value, 0 <-> 1, for each vertex
const numVerts = arrays.position.length / 3;
const hotness = [];
for (let i = 0; i < numVerts; ++i) {
const pos = arrays.position.subarray(i * 3, i * 3 + 3);
const dist = v3.distance([3, 1, 3 + Math.sin(pos[0])], pos);
hotness[i] = clamp(dist / 10, 0, 1);
}
arrays.hotness = {
numComponents: 1,
data: hotness,
};
// calls gl.createBuffer, gl.bindBuffer, gl.bufferData for each
// array in arrays
const bufferInfo = twgl.createBufferInfoFromArrays(gl, arrays);
const colors = [
255, 0, 0, 255, // red
255, 150, 30, 255, // orange
255, 255, 0, 255, // yellow
0, 210, 0, 255, // green
0, 255, 255, 255, // cyan
0, 0, 255, 255, // blue
160, 30, 255, 255, // purple
255, 0, 255, 255, // magenta
];
// calls gl.createTexture, gl.texImage2D, gl.texParameteri
const lookupTableTexture = twgl.createTexture(gl, {
src: colors,
width: colors.length / 4,
wrap: gl.CLAMP_TO_EDGE,
minMag: gl.NEAREST, // comment this line out to see non hard edges
});
twgl.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.enable(gl.DEPTH_TEST);
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const halfHeight = 8;
const halfWidth = halfHeight * aspect;
const projection = m4.ortho(
-halfWidth, halfWidth,
-halfHeight, halfHeight,
-2, 2);
const modelView = m4.identity();
m4.rotateX(modelView, Math.PI * .5, modelView);
gl.useProgram(programInfo.program);
// calls gl.bindbuffer, gl.enableVertexAttribArray, gl.vertexAttribPointer
// for each attribute
twgl.setBuffersAndAttributes(gl, programInfo, bufferInfo);
// calls gl.activeTexture, gl.bindTexture, gl.uniformXXX
twgl.setUniforms(programInfo, {
projection,
modelView,
lookupTable: lookupTableTexture,
lightDirection: v3.normalize([1, 2, 3]),
});
// calls gl.drawArrays or gl.drawElements
twgl.drawBufferInfo(gl, bufferInfo);
function clamp(v, min, max) {
return Math.min(max, Math.max(min, v));
}
body { margin: 0; }
canvas { width: 100vw; height: 100vh; display: block; }
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<canvas></canvas>
One way of doing this would be add the flat interpolation modifier to your color attribute, as described in this tutorial. This will prevent color values from beeing interpolated, so each triangle will end up with only one color (the one specified in the first of the three vertices).
Sadly I couldn't find anything about its webgl support, but you might as well try it out to see if it works.
If it doesn't work or you don't want the inividual triangles to be visible, you could also load the color data to a texture and retrieve the color of each pixel in the fragment shader. There would still be some interpolation depending on the texture size though (similar to how an image becomes blurry when scaled up).

Conway's game of life in 3D FPS problems

I am trying to implement conway's game of life in 3D. Basically, I am experimenting it with an extra dimension.
I am instantiating a list of cubes at the start of the game and give each one of them an index that's going to be associated with a logic object where I call twgl.drawObjectList if it's alive, else I will skip it within a function that I am using requestAnimationFrame on.
The problem is that the FPS drops below 1 when I make a 50*50*50 (125000 cubes) game. Is this normal? Am I doing the correct approach?
Edit:
function newGame (xDimV, yDimV, zDimV, gameSelected = false) {
// No game to load
if (!gameSelected) {
xDim = xDimV;
yDim = yDimV;
zDim = zDimV;
} else {
xDim = gameSelected[0][0].length;
yDim = gameSelected[0].length;
zDim = gameSelected.length;
}
myGame = Object.create(game);
myGame.consutructor(xDim , yDim , zDim, gameSelected);
objects = [];
for (var z = 0; z < zDim; z++) {
for (var y = 0; y < yDim; y++){
for (var x = 0; x < xDim; x++){
var uniforms = {
u_colorMult: chroma.hsv(emod(baseHue + rand(0, 120), 360), rand(0.5,
1), rand(0.5, 1)).gl(),
u_world: m4.identity(),
u_worldInverseTranspose: m4.identity(),
u_worldViewProjection: m4.identity(),
};
var drawObjects = [];
drawObjects.push({
programInfo: programInfo,
bufferInfo: cubeBufferInfo,
uniforms: uniforms,
});
objects.push({
translation: [(x*scale)-xDim*scale/2, (z*scale), (y*scale)-yDim*scale/2],
scale: scale,
uniforms: uniforms,
bufferInfo: cubeBufferInfo,
programInfo: programInfo,
drawObject: drawObjects,
index: [z, y, x],
});
}
}
}
requestAnimationFrame(render);
}
var then = 0;
function render(time) {
time *= 0.001;
var elapsed = time - then;
then = time;
twgl.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.enable(gl.DEPTH_TEST);
gl.enable(gl.CULL_FACE);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.clearColor(255, 255, 0, 0.1);
var fovy = 30 * Math.PI / 180;
var projection = m4.perspective(fovy, gl.canvas.clientWidth / gl.canvas.clientHeight, 0.5, 10000);
var eye = [cameraX, cameraY, cameraZ];
var target = [cameraX, cameraY, 10];
var up = [0, 1, 0];
var camera = m4.lookAt(eye, target, up);
var view = m4.inverse(camera);
var viewProjection = m4.multiply(projection, view);
viewProjection = m4.rotateX(viewProjection, phi);
viewProjection = m4.rotateY(viewProjection, theta);
targetTimer -= elapsed;
objects.forEach(function(obj) {
var uni = obj.uniforms;
var world = uni.u_world;
m4.identity(world);
m4.translate(world, obj.translation, world);
m4.scale(world, [obj.scale, obj.scale, obj.scale], world);
m4.transpose(m4.inverse(world, uni.u_worldInverseTranspose), uni.u_worldInverseTranspose);
m4.multiply(viewProjection, uni.u_world, uni.u_worldViewProjection);
if (myGame.life[obj.index[0]][obj.index[1]][obj.index[2]] === 1) {
twgl.drawObjectList(gl, obj.drawObject);
}
});
if (targetTimer <= 0 && !paused) {
targetTimer = targetChangeInterval / speed;
myGame.nextGen();
setGameStatus();
myGame.resetStatus();
}
requestAnimationFrame(render);
}
Thanks in advance.
125k cubes is quite a lot. Typical AAA games generally make 1000 to 5000 draw calls total. There are breakdowns on the web of various game engines and how many draw calls they take the generate a frame.
Here's a talk with several methods. It includes putting all the cubes in one giant mesh and moving them around in JavaScript so they're is effectively one draw call.
If it was me I'd do that and I'd make a texture with one pixel per cube. So for 125k cubes that texture would be like 356x356 though I'd probably choose something more fitting the cube size like 500x300 (since each face slice is 50x50). For each vertex of each cube I'd have an attribute with a UV pointing to a specific pixel in that texture. In other words for the first vertices of the first cube there would be an attribute that UVs that repeats 36 times, in a new UVs for the 2nd cube that repeats 36 times,
attribute vec2 cubeUV;
Then I can use the cubeUV to lookup a pixel in the texture whether or not the cube should be on or off
attribute vec2 cubeUV;
uniform sampler2D lifeTexture;
void main() {
float cubeOn = texture2D(lifeTexture, cubeUV).r;
}
I could clip out the cube pretty easily with
if (cubeOn < 0.5) {
gl_Position = vec4(2, 2, 2, 1); // outside clip space
return;
}
// otherwise do the calcs for a cube
In this case the cubes don't need to move so all JavaScript has to do each frame is compute life in some Uint8Array and then call
gl.bindTexture(gl.TEXTURE_2D, lifeTexture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.LUMINANCE, width, height, 0,
gl.LUMINANCE, gl.UNSIGNED_BYTE, lifeStatusUint8Array);
every frame and make one draw call.
Note: You can effectively see examples of this type of shader here except that that shdaer is not looking at a texture with life running in it, instead it's looking at a texture with 4 seconds of audio data in it. It's also generating the cubeId from vertexId and generating the cube vertices and normals from vertexId. That would make it slower than putting that data in attributes but it is an example of positioning or drawing cubes based on data coming from a texture.
const vs = `
attribute vec4 position;
attribute vec3 normal;
attribute vec2 cubeUV;
uniform mat4 u_matrix;
uniform sampler2D u_lifeTex;
varying vec3 v_normal;
void main() {
float on = texture2D(u_lifeTex, cubeUV).r;
if (on < .5) {
gl_Position = vec4(20, 20, 20, 1);
return;
}
gl_Position = u_matrix * position;
v_normal = normal;
}
`;
const fs = `
precision mediump float;
varying vec3 v_normal;
void main() {
gl_FragColor = vec4(v_normal * .5 + .5, 1);
}
`;
const oneFace = [
[ -1, -1, ],
[ 1, -1, ],
[ -1, 1, ],
[ -1, 1, ],
[ 1, -1, ],
[ 1, 1, ],
];
const m4 = twgl.m4;
const gl = document.querySelector("canvas").getContext("webgl");
// compiles shaders, links program, looks up locations
const programInfo = twgl.createProgramInfo(gl, [vs, fs]);
const cubeSize = 50;
const texBuf = makeCubeTexBuffer(gl, cubeSize);
const tex = twgl.createTexture(gl, {
src: texBuf.buffer,
width: texBuf.width,
format: gl.LUMINANCE,
wrap: gl.CLAMP_TO_EDGE,
minMag: gl.NEAREST,
});
const arrays = makeCubes(cubeSize, texBuf);
// calls gl.createBuffer, gl.bindBuffer, gl.bufferData for each array
const bufferInfo = twgl.createBufferInfoFromArrays(gl, arrays);
function render(time) {
time *= 0.001; // seconds
twgl.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.enable(gl.DEPTH_TEST);
//gl.enable(gl.CULL_FACE);
const fov = Math.PI * .25;
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const zNear = .01;
const zFar = 1000;
const projection = m4.perspective(fov, aspect, zNear, zFar);
const radius = cubeSize * 2.5;
const speed = time * .1;
const position = [
Math.sin(speed) * radius,
Math.sin(speed * .7) * radius * .7,
Math.cos(speed) * radius,
];
const target = [0, 0, 0];
const up = [0, 1, 0];
const camera = m4.lookAt(position, target, up);
const view = m4.inverse(camera);
const mat = m4.multiply(projection, view);
// do life
// (well, randomly turn on/off cubes)
for (let i = 0; i < 100; ++i) {
texBuf.buffer[Math.random() * texBuf.buffer.length | 0] = Math.random() > .5 ? 255 : 0;
}
gl.bindTexture(gl.TEXTURE_2D, tex);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.LUMINANCE, texBuf.width, texBuf.height,
0, gl.LUMINANCE, gl.UNSIGNED_BYTE, texBuf.buffer);
gl.useProgram(programInfo.program)
// calls gl.bindBuffer, gl.enableVertexAttribArray, gl.vertexAttribPointer
twgl.setBuffersAndAttributes(gl, programInfo, bufferInfo);
twgl.setUniforms(programInfo, {
u_matrix: mat,
u_lifeTex: tex,
});
// calls gl.drawArrays or gl.drawElements
twgl.drawBufferInfo(gl, bufferInfo);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
// generate cubes
function makeCube(vertOffset, off, uv, arrays) {
const positions = arrays.position;
const normals = arrays.normal;
const cubeUV = arrays.cubeUV;
for (let f = 0; f < 6; ++f) {
const axis = f / 2 | 0;
const sign = f % 2 ? -1 : 1;
const major = (axis + 1) % 3;
const minor = (axis + 2) % 3;
for (let i = 0; i < 6; ++i) {
const offset2 = vertOffset * 2;
const offset3 = vertOffset * 3;
positions[offset3 + axis ] = off[axis] + sign;
positions[offset3 + major] = off[major] + oneFace[i][0];
positions[offset3 + minor] = off[minor] + oneFace[i][1];
normals[offset3 + axis ] = sign;
normals[offset3 + major] = 0;
normals[offset3 + minor] = 0;
cubeUV[offset2 + 0] = uv[0];
cubeUV[offset2 + 1] = uv[1];
++vertOffset;
}
}
return vertOffset;
}
function makeCubes(size, texBuf) {
const numCubes = size * size * size;
const numVertsPerCube = 36;
const numVerts = numCubes * numVertsPerCube;
const slicesAcross = texBuf.width / size | 0;
const arrays = {
position: new Float32Array(numVerts * 3),
normal: new Float32Array(numVerts * 3),
cubeUV: new Float32Array(numVerts * 2),
};
let spacing = size * 1.2;
let vertOffset = 0;
for (let z = 0; z < size; ++z) {
const zoff = (z / (size - 1) * 2 - 1) * spacing;
for (let y = 0; y < size; ++y) {
const yoff = (y / (size - 1) * 2 - 1) * spacing;
for (let x = 0; x < size; ++x) {
const xoff = (x / (size - 1) * 2 - 1) * spacing;
const sx = z % slicesAcross;
const sy = z / slicesAcross | 0;
const uv = [
(sx * size + x + 0.5) / texBuf.width,
(sy * size + y + 0.5) / texBuf.height,
];
vertOffset = makeCube(vertOffset, [xoff, yoff, zoff], uv, arrays);
}
}
}
arrays.cubeUV = {
numComponents: 2,
data: arrays.cubeUV,
};
return arrays;
}
function makeCubeTexBuffer(gl, cubeSize) {
const numCubes = cubeSize * cubeSize * cubeSize;
const maxTextureSize = Math.min(gl.getParameter(gl.MAX_TEXTURE_SIZE), 2048);
const maxSlicesAcross = maxTextureSize / cubeSize | 0;
const slicesAcross = Math.min(cubeSize, maxSlicesAcross);
const slicesDown = Math.ceil(cubeSize / slicesAcross);
const width = slicesAcross * cubeSize;
const height = slicesDown * cubeSize;
const buffer = new Uint8Array(width * height);
return {
buffer: buffer,
slicesAcross: slicesAcross,
slicesDown: slicesDown,
width: width,
height: height,
};
}
body { margin: 0; }
canvas { width: 100vw; height: 100vh; display: block; }
<script src="https://twgljs.org/dist/3.x/twgl-full.min.js"></script>
<canvas></canvas>
hoiested from the comments below, using a big merged mesh appears to be 1.3x faster than using instanced drawing. Here's 3 samples
big mesh using texture uvs (same as above)
instanced using texture uvs (less data, same shader)
instanced no texture (no texture, life data is in buffer/attribute)
For me, on my machine #1 can do 60x60x60 cubes (216000) at 60fps whereas both #2 and #3 only get 56x56x56 cubes (175616) at 60fps. Of course other GPUs/system/browsers might be different.
The fps drop is coming from two things most likely:
The overhead of doing 125k matrix operations each tick.
The overhead of doing 125k drawcalls.
You can look into instancing
http://blog.tojicode.com/2013/07/webgl-instancing-with.html?m=1
And possibly move the matrix stuff into a shader

Resources