How to write a while() loop in Gforth - forth

I'd like to write a while() loop in Gforth. Unfortunately, the only tutorial online isn't useful due to a lack of examples, and examples on counted loops (what I'm not looking for) appear fundamentally different.
What are some concrete examples of how to represent something like this?
while (x > 3) { print(x); x--; }
Or really, just some concrete way to represent anything of the form:
while (predicate) { expression(s) }

Your first piece of code translates to:
\ Assuming x is on the top of the stack.
begin dup 3 > while dup . 1- repeat
\ Or if x is in memory.
begin x # 3 > while x ? -1 x +! repeat
And the second:
begin predicate while expressions repeat

Related

How do I prove the while loop terminates in Dafny?

I'm new to Dafny and learning it. For the following Dafny code
method Dummy(s: seq<nat>) returns (ret: nat)
requires forall k :: 0 <= k < |s| ==> s[k] > 0
{
ret := 0;
var se := s;
while |se| > 0
{
// Pick a random index of the seq.
var i :| 0 <= i < |se|;
if se[i] == 1 {
// Remove the seq element if it is 1.
se := se[..i] + se[i + 1..];
} else {
// Replace the seq element with 3 occurences of 1.
se := [1, 1, 1] + se[..i] + se[i + 1..];
}
}
return;
}
I'm seeing complaints which are
decreases |se| - 0Dafny VSCode
cannot prove termination; try supplying a decreases clause for the loopDafny VSCode
I know that to prove termination, generally I should provide a decreases clause. I just cannot find what to put in the decreases clause in this case. Simply putting
decreases |se|
there will not work, as in the else part of the if statement the seq size may actaully increase.
If this is a pen and paper proof, I would like to argue that for any element that is 1, it will be removed; and for any element that is greater than 1, it will be replaced by 3 occurences of 1, which will still be removed finally. Hence se will be empty in the end and loop terminates.
How do I turn it to codes that Dafny would agree?
The key is to introduce a function that I call "total potential" that computes how many iterations the loop will take to process the list. Its definition is "for every 1 in the list, add 1 to the total potential, for every non-1 in the list, add 4 to the total potential". Then, we will make the decreases clause the total potential. This way, when a 1 gets removed, the potential goes down by 1, and when a non-1 gets removed and replaced by three ones, the potential also goes down by 1.
There is some additional work to convince Dafny that the total potential actually decreases on each loop iteration. You will need a few lemmas about how the total potential relates to slicing and appending sequences.

What wrong with my dafny method. simple method postcondition might not hold

I am new to Dafny, and I am trying to write a code to computer 5*m-3*n without using *.
Can anybody tell me what wrong with my code? I think it is the invariant and decrease.
method CalcTerm(m: int, n: nat) returns (res: int)
ensures res == 5*m-3*n;
{
var m1: nat := abs(m);
var n1: nat := n;
res := 0;
while (m1!=0)
invariant m1>=0
decreases m1
{
res := res+5;
m1 := m1-1;
}
if (m<0) { res := -res; }
while (n1!=0)
invariant n1 >= 0
decreases n1
{
res := res-3;
n1 := n1-1;
}
}
But it keep saying that:
A postcondition might not hold on this return path. 29 2
You're right that the issue has to do with loop invariants. I recommend reading the two sections of the Guide on Assertions and Loop Invariants.
Dafny "summarizes" the effect of a loop using only its invariants. So after the second loop in your method, Dafny will only know that n1 >= 0 and that the loop has terminated, so actually n1 == 0. This is not enough information to prove your postcondition: you need a stronger invariant. Here's one that might help you make progress
invariant res == 5 * m - 3 * (n - n1)
This invariant computes the value of res in terms of how many iterations of the loop have executed so far (n - n1). If you add this invariant to the second loop, you'll get a new error (progress!) that says it might not hold on entry. This means that Dafny is able to prove your postcondition, but not able to establish that the new invariant is true after the first loop is done. This is again because the invariant on the first loop is too weak.
Maybe this gives you enough information to try coming up with another invariant for the first loop on your own. Feel free to ask more questions here if you get stuck.

Implementing post / pre increment / decrement when translating to Lua

I'm writing a LSL to Lua translator, and I'm having all sorts of trouble implementing incrementing and decrementing operators. LSL has such things using the usual C like syntax (x++, x--, ++x, --x), but Lua does not. Just to avoid massive amounts of typing, I refer to these sorts of operators as "crements". In the below code, I'll use "..." to represent other parts of the expression.
... x += 1 ...
Wont work, coz Lua only has simple assignment.
... x = x + 1 ...
Wont work coz that's a statement, and Lua can't use statements in expressions. LSL can use crements in expressions.
function preIncrement(x) x = x + 1; return x; end
... preIncrement(x) ...
While it does provide the correct value in the expression, Lua is pass by value for numbers, so the original variable is not changed. If I could get this to actually change the variable, then all is good. Messing with the environment might not be such a good idea, dunno what scope x is. I think I'll investigate that next. The translator could output scope details.
Assuming the above function exists -
... x = preIncrement(x) ...
Wont work for the "it's a statement" reason.
Other solutions start to get really messy.
x = preIncrement(x)
... x ...
Works fine, except when the original LSL code is something like this -
while (doOneThing(x++))
{
doOtherThing(x);
}
Which becomes a whole can of worms. Using tables in the function -
function preIncrement(x) x[1] = x[1] + 1; return x[1]; end
temp = {x}
... preincrement(temp) ...
x = temp[1]
Is even messier, and has the same problems.
Starting to look like I might have to actually analyse the surrounding code instead of just doing simple translations to sort out what the correct way to implement any given crement will be. Anybody got any simple ideas?
I think to really do this properly you're going to have to do some more detailed analysis, and splitting of some expressions into multiple statements, although many can probably be translated pretty straight-forwardly.
Note that at least in C, you can delay post-increments/decrements to the next "sequence point", and put pre-increments/decrements before the previous sequence point; sequence points are only located in a few places: between statements, at "short-circuit operators" (&& and ||), etc. (more info here)
So it's fine to replace x = *y++ + z * f (); with { x = *y + z * f(); y = y + 1; }—the user isn't allowed to assume that y will be incremented before anything else in the statement, only that the value used in *y will be y before it's incremented. Similarly, x = *--y + z * f(); can be replaced with { y = y - 1; x = *y + z * f (); }
Lua is designed to be pretty much impervious to implementations of this sort of thing. It may be done as kind of a compiler/interpreter issue, since the interpreter can know that variables only change when a statement is executed.
There's no way to implement this kind of thing in Lua. Not in the general case. You could do it for global variables by passing a string to the increment function. But obviously it wouldn't work for locals, or for variables that are in a table that is itself global.
Lua doesn't want you to do it; it's best to find a way to work within the restriction. And that means code analysis.
Your proposed solution only will work when your Lua variables are all global. Unless this is something LSL also does, you will get trouble translating LSL programs that use variables called the same way in different places.
Lua is only able of modifying one lvalue per statement - tables being passed to functions are the only exception to this rule. You could use a local table to store all locals, and that would help you out with the pre-...-crements; they can be evaluated before the expression they are contained in is evauated. But the post-...-crements have to be evaluated later on, which is simply not possible in lua - at least not without some ugly code involving anonymous functions.
So you have one options: you must accept that some LSL statements will get translated to several Lua statements.
Say you have a LSL statement with increments like this:
f(integer x) {
integer y = x + x++;
return (y + ++y)
}
You can translate this to a Lua statement like this:
function f(x) {
local post_incremented_x = x + 1 -- extra statement 1 for post increment
local y = x + post_incremented_x
x = post_incremented_x -- extra statement 2 for post increment
local pre_incremented_y = y + 1
return y + pre_incremented_y
y = pre_incremented_y -- this line will never be executed
}
So you basically will have to add two statements per ..-crement used in your statements. For complex structures, that will mean calculating the order in which the expressions are evaluated.
For what is worth, I like with having post decrements and predecrements as individual statements in languages. But I consider it a flaw of the language when they can also be used as expressions. The syntactic sugar quickly becomes semantic diabetes.
After some research and thinking I've come up with an idea that might work.
For globals -
function preIncrement(x)
_G[x] = _G[x] + 1
return _G[x]
end
... preIncrement("x") ...
For locals and function parameters (which are locals to) I know at the time I'm parsing the crement that it is local, I can store four flags to tell me which of the four crements is being used in the variables AST structure. Then when it comes time to output the variables definition, I can output something like this -
local x;
function preIncrement_x() x = x + 1; return x; end
function postDecrement_x() local y = x; x = x - 1; return y; end
... preIncrement_x() ...
In most of your assessment of configurability to the code. You are trying to hard pass data types from one into another. And call it a 'translator'. And in all of this you miss regex and other pattern match capacities. Which are far more present in LUA than LSL. And since the LSL code is being passed into LUA. Try using them, along with other functions. Which would define the work more as a translator, than a hard pass.
Yes I know this was asked a while ago. Though, for other viewers of this topic. Never forget the environments you are working in. EVER. Use what they give you to the best ability you can.

Erlang Code Snippet that shows off its benefits?

I'm giving a small presentation to a group of C/C++ programmers who have very little experience with functional languages. Part of the presentation mentions Erlang, and I would like to give a specific small code example.
There is a ton of awesome information on StackOverflow about how/where Erlang is used and its advantages. One of the most common advantages I see is how it can do a lot with just a little terse code, especially compared to C/C++.
I am looking for a good code snippet of Erlang that simply illustrates these types of benefits. Especially something thats easily done in Erlang with few lines, that would be much more complicated in C/C++.
Anyone have any interesting suggestions?
Check out example 4 for an excellent example of Erlang's bit syntax. I'm sure there are a number of c/c++ developers that will appreciate the brevity of the syntax!
I would use an example which shows how easy it is to do concurrency.
So basically write map-reduce (but never ever use that word to describe it to a C programmer).
You could start with showing a program that plays Fizz Buzz, and then proceed to make it concurrent. Should easily fit a whiteboard, or two pages of powerpoint.
A Co-worker suggested using Merge-Sort as an example:
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort#Erlang
mergeSort(L) when length(L) == 1 -> L;
mergeSort(L) when length(L) > 1 ->
{L1, L2} = lists:split(length(L) div 2, L),
lists:merge(mergeSort(L1), mergeSort(L2)).
Multi-process version:
pMergeSort(L) when length(L) == 1 -> L;
pMergeSort(L) when length(L) > 1 ->
{L1, L2} = lists:split(length(L) div 2, L),
spawn(mergesort, pMergeSort2, [L1, self()]),
spawn(mergesort, pMergeSort2, [L2, self()]),
mergeResults([]).
pMergeSort2(L, Parent) when length(L) == 1 -> Parent ! L;
pMergeSort2(L, Parent) when length(L) > 1 ->
{L1, L2} = lists:split(length(L) div 2, L),
spawn(mergesort, pMergeSort2, [L1, self()]),
spawn(mergesort, pMergeSort2, [L2, self()]),
Parent ! mergeResults([]).
Pythagorean Triples. Get all number combinations below 30 whereby the 3 numbers make a right angled triangle as it is according to Pythagoras.
[{X,Y,Z} || X <- lists:seq(1,30),
Y <- lists:seq(1,30),
Z <- lists:seq(1,30), ((X * X) + (Y * Y)) == (Z * Z)].
Try doing that in C/C++ , or Java and see if you will avoid a for loop if not more than one depending on your skill level :)
the factorial code snippet is the best i have always used to show how short erlang programs can be
-module(factorial).
-export([calculate/1]).
calculate(0) -> 1;
calculate(N) -> N * calculate(N -1).
As simple as that. That short program illustrates not only how short Erlang programs can be, But also: Pattern Matching, Function Clauses and Last Call Optimization. I always had a C++ version of the same, below:
#include<iostream.h>
#include<conio.h>
long factorial(unsigned int a);
void main() {
unsigned int a;
long fac;
.....
.....
return factorial(a);
}
long factorial(unsigned int x) {
long fac=1;
if(x == 0) {return 1;}
else {
while(x > 0) {
fac *= x;
x -= 1 ;
}
return fac; }
}
Well, this may not be the shortest C++ version, but i know you get the idea.

Why "do...while" does not exist in F#

I cannot find "do...while..."
I have to code like this:
let bubbleSort a=
let n = Array.length a
let mutable swapped = true
let mutable i = 0
while swapped do
swapped <- false
for j = 0 to n-i-2 do
if a.[j] > a.[j+1] then
let t = a.[j]
a.[j] <- a.[j+1]
a.[j+1] <- t
swapped <- true
i <- i+1
The code is bad without "do...while".
Sadly, "break/continue" are also not available.
F# is very much suitable for non-functional programming. In fact, being able to fine-tune parts of an algorithm in an imperative style is one of the major strong points of the language for me.
For example, in tackling a project euler problem, I started out with a clean functional solution using immutable sets and folds. It took 150 seconds to complete. Now having the framework of my algorithm in place allowed me to pick apart the data structures and folds operations one at a time until I managed to get the run time down to 5 seconds. My final solution was very much an imperative one (and even slightly faster than an equivalent C# version).
As you can see I solved it by coding a solution in functional style first and then rewrite small parts to an imperative style. Not having to deal with indices and other loop conditions explicitly kept the code more understandable for me.
Once you learn how to think like a functional programmer you'll find that you'll rarely want breaks and continues. That's what I experienced. But if you do need them, knowing how to think in a functional way helps in coming up with work-arounds, usually involving a tail-recursive version of what used to be a loop.
By the time you start thinking more in an idiomatic F# way, you'll probably see more and more (tail-)recursive code replacing what you used to do with looping constructs. Heck, writing F# for 2 years now has warped my mind so far that I'm more likely to pick recursion and folds over loops.
Whenever I think I need break/continue, I usually don't because there's a cleaner version of the algorithm hidden and waiting to get out. The biggest challenge is learning how to find that cleaner version. I'm afraid that lots of practice and good examples are the only way to get better at thinking functionally, but I believe that it's an effort well spent.
Edit: ironically, bubble sort is an algorithm which is actually designed for arrays with mutable contents. Any recursive bubble sort is likely to be harder to understand than an imperative version. I think I just killed my own post here.
It turns out to be quite easy to write a good enough do-while in F# as a higher-order function:
let doWhile f c =
f ()
while c () do
f ()
break and continue would be a really useful feature additions; they're reserved words, and maybe we'll see them in a future version of the language. The lack of them is an occasional minor annoyance, but hardly makes the language 'unsuitable'. In the mean time, a mutable sentinel works, as you have in your example.
See also
http://tomasp.net/blog/imperative-ii-break.aspx/
do/while is not available because F# is a functional language and this kind of construct is specific to imperative languages.
break/continue is also not available for the same reasons.
However, you can still write do/while in F#. The following code blocks are equivalent :
in C#
do
{
System.Console.WriteLine("processing something...");
System.Console.WriteLine("doing something complicated");
System.Console.Write("continue?");
} while (Console.ReadLine() == "y");
in F#
let doSomethingAndContinue() =
printfn "processing something..."
printfn "doing something complicated"
printf "continue?"
System.Console.ReadLine()="y"
while doSomethingAndContinue() do ignore None
Although a bit more verbose, you can use recursive functions to avoid the "do while" as in :
let swap (a:int[]) i j =
let t = a.[i]
a.[i] <- a.[j]
a.[j] <- t
let rec bubbleSortAux a nMax j swapped =
if j >= 0 && j <= nMax then
if a.[j] > a.[j+1] then
swap a j (j+1)
bubbleSortAux a nMax (j+1) true
else
bubbleSortAux a nMax (j+1) false
else
swapped
let rec bubbleSortLoop a nMax =
if bubbleSortAux a nMax 0 false then
bubbleSortLoop a (nMax - 1)
let bubbleSort a =
bubbleSortLoop a (a.Length - 2)
let bubbleSort (a: _ []) =
let mutable fin = false
while not fin do
fin <- true
for i=0 to a.Length-2 do
if a.[i] > a.[i+1] then
let t = a.[i]
a.[i] <- a.[i+1]
a.[i+1] <- t
fin <- false
I do not know about F# very well, but F# is a functional language. Usually, there is no such thing as "for" or "while" loops in functional programming languages.
Functional languages define functions in a mathematical sense (like f(x) => ...). Writing a program comes down to defining and combining a set of mathematical functions. This means that the only way of coding loops is using recursion.
In Mathematics, there is no way of saying:
f(x) => "do 5 times this"
What you'd do is define f like:
count > 0 : f(x, count-1)
f(x, count) => {
count <= 0 : ...
And then use this function as in:
y = f(x, 5)
This would be exactly how you implement functions in functional languages.
At least, this is true for purely functional languages like Haskell...
You can do something like
let mutable ind = 0
while (
//Do your stuff here
//Now condition part return some boolean value
ind < 10
) do ind <- ind +1
I just recently found this way. It feels a bit hacky but what I like is that you can build something more complex what usually caused issues in C#, C++.
let mutable ind = 0
while (
(some condition) && (
//do something
let someValue = Eval ....
//Now more complex condition
ind + someValue < 10
)
) do ind <- ind +1

Resources