Assuming the static scene, with a single camera moving exactly sideways at small distance, there are two frames and a following computed optic flow (I use opencv's calcOpticalFlowFarneback):
Here scatter points are detected features, which are painted in pseudocolor with depth values (red is little depth, close to the camera, blue is more distant). Now, I obtain those depth values by simply inverting optic flow magnitude, like d = 1 / flow. Seems kinda intuitive, in a motion-parallax-way - the brighter the object, the closer it is to the observer. So there's a cube, exposing a frontal edge and a bit of a side edge to the camera.
But then I'm trying to project those feature points from camera plane to the real-life coordinates to make a kind of top view map (where X = (x * d) / f and Y = d (where d is depth, x is pixel coordinate, f is focal length, and X and Y are real-life coordinates). And here's what I get:
Well, doesn't look cubic to me. Looks like the picture is skewed to the right. I've spent some time thinking about why, and it seems that 1 / flow is not an accurate depth metric. Playing with different values, say, if I use 1 / power(flow, 1 / 3), I get a better picture:
But, of course, power of 1 / 3 is just a magic number out of my head. The question is, what is the relationship between optic flow in depth in general, and how do I suppose to estimate it for a given scene? We're just considering camera translation here. I've stumbled upon some papers, but no luck trying to find a general equation yet. Some, like that one, propose a variation of 1 / flow, which isn't going to work, I guess.
Update
What bothers me a little is that simple geometry points me to 1 / flow answer too. Like, optic flow is the same (in my case) as disparity, right? Then using this formula I get d = Bf / (x2 - x1), where B is distance between two camera positions, f is focal length, x2-x1 is precisely the optic flow. Focal length is a constant, and B is constant for any two given frames, so that leaves me with 1 / flow again multiplied by a constant. Do I misunderstand something about what optic flow is?
for a static scene, moving a camera precisely sideways a known amount, is exactly the same as a stereo camera setup. From this, you can indeed estimate depth, if your system is calibrated.
Note that calibration in this sense is rather broad. In order to get real accurate depth, you will need to in the end supply a scale parameter on top of the regular calibration stuff you have in openCV, or else there is a single uniform ambiguity of the 3D (This last step is often called going to the "metric" reconstruction from only the "Euclidean").
Another thing which is apart of broad calibration is lens distortion compensation. Before anything else, you probably want to force your cameras to behave like pin-hole cameras (which real-world cameras usually dont).
With that said, optical flow is definetely very different from a metric depth map. If you properly calibraty and rectify your system first, then optical flow is still not equivalent to disparity estimation. If your system is rectified, there is no point in doing a full optical flow estimation (such as Farnebäck), because the problem is thereafter constrained along the horizontal lines of the image. Doing a full optical flow estimation (giving 2 d.o.f) will introduce more error after said rectification likely.
A great reference for all this stuff is the classic "Multiple View Geometry in Computer Vision"
Related
I want to reopen a similar question to one which somebody posted a while ago with some major difference.
The previous post is https://stackoverflow.com/questions/52536520/image-matching-using-intrinsic-and-extrinsic-camera-parameters]
and my question is can I do the matching if I do have the depth?
If it is possible can some describe a set of formulas which I have to solve to get the desirable matching ?
Here there is also some correspondence on slide 16/43:
Depth from Stereo Lecture
In what units all the variables here, can some one clarify please ?
Will this formula help me to calculate the desirable point to point correspondence ?
I know the Z (mm, cm, m, whatever unit it is) and the x_l (I guess this is y coordinate of the pixel, so both x_l and x_r are on the same horizontal line, correct if I'm wrong), I'm not sure if T is in mm (or cm, m, i.e distance unit) and f is in pixels/mm (distance unit) or is it something else ?
Thank you in advance.
EDIT:
So as it was said by #fana, the solution is indeed a projection.
For my understanding it is P(v) = K (Rv+t), where R is 3 x 3 rotation matrix (calculated for example from calibration), t is the 3 x 1 translation vector and K is the 3 x 3 intrinsics matrix.
from the following video:
It can be seen that there is translation only in one dimension (because the situation is where the images are parallel so the translation takes place only on X-axis) but in other situation, as much as I understand if the cameras are not on the same parallel line, there is also translation on Y-axis. What is the translation on the Z-axis which I get through the calibration, is it some rescale factor due to different image resolutions for example ? Did I wrote the projection formula correctly in the general case?
I also want to ask about the whole idea.
Suppose I have 3 cameras, one with large FOV which gives me color and depth for each pixel, lets call it the first (3d tensor, color stacked with depth correspondingly), and two with which I want to do stereo, lets call them second and third.
Instead of calibrating the two cameras, my idea is to use the depth from the first camera to calculate the xyz of pixel u,v of its correspondent color frame, that can be done easily and now to project it on the second and the third image using the R,t found by calibration between the first camera and the second and the third, and using the K intrinsics matrices so the projection matrix seems to be full known, am I right ?
Assume for the case that FOV of color is big enough to include all that can be seen from the second and the third cameras.
That way, by projection each x,y,z of the first camera I can know where is the corresponding pixels on the two other cameras, is that correct ?
I need to find the intrinsic parameters of a CCTV camera using a set of historic footage images (That is all I got, no control on the environment, thus no chessboard calibration).
The good news is that I have the access to some ground-truth real-world coordinates, visible in most of the images.
Just wondering if there is any solid approach to come up with the camera intrinsic parameters.
P.S. I already found the homography matrix using cv2.findHomography in Python.
P.S. I have already tested QTcalib on two machines, but it is unable to visualize the images in the first place. Not sure what is wrong with it.
Thanks in advance.
intrinsic parameters contain both fx fy cx cy and skew with additional distortion parameters k1-k5 r1-r2.
Assuming you have no distortion and cx and cy are perfectly in the center. Image origin at top left as a normal understanding of the image. As you say you know some ground truth level 3D points.3D measurements are with respect to camera optical axis. Then this 3D point P can be projected into camera image plane called p. The P p O(the camera optical center) with center lines forms isosceles triangle.
fx / (p_x-cx) = P_z / P_x
fx = (p_x-cx) * P_z / P_x
The same goes for the fy. and usually fx and fy are the same.
This is under the perfect assumption that you don't have distortion on camera. If you start to have distortion, then you need to find enough sample points all over the image to form distortion understanding as shown below. One or 2 points won't give you the whole picture understanding.
There are some cheats in some papers that using sea vanishing lines(see ref, it is a series of works) or perfect 3D building vanishing points to detect the distortion. We start from extrinsic to intrinsic and it can get some good guess after some trial eventually. But it is very much in research and can not apply to general cases.
Ref: Han Wang, Wei Mou, Xiaozheng Mou, Shenghai Yuan, Soner Ulun, Shuai Yang and Bok-Suk Shin, An Automatic Self-Calibration Approach for Wide Baseline Stereo Cameras Using Sea Surface Images, unmanned system
If all you have is a video and a few 3d points, your best bet is probably to matchmove it, that is, do a manually assisted bundle adjustment using a 3D computer graphics environment, e.g. Blender. There are a lot of tutorials online on how to do it (example). To add the 3d points as constraints, you build some shapes representing them in the virtual world (e.g. some small spheres) and place them so that their relative positions match the ground truth you have, then add them to the tracker solution.
let's say I am placing a small object on a flat floor inside a room.
First step: Take a picture of the room floor from a known, static position in the world coordinate system.
Second step: Detect the bottom edge of the object in the image and map the pixel coordinate to the object position in the world coordinate system.
Third step: By using a measuring tape measure the real distance to the object.
I could move the small object, repeat this three steps for every pixel coordinate and create a lookup table (key: pixel coordinate; value: distance). This procedure is accurate enough for my use case. I know that it is problematic if there are multiple objects (an object could cover an other object).
My question: Is there an easier way to create this lookup table? Accidentally changing the camera angle by a few degrees destroys the hard work. ;)
Maybe it is possible to execute the three steps for a few specific pixel coordinates or positions in the world coordinate system and perform some "calibration" to calculate the distances with the computed parameters?
If the floor is flat, its equation is that of a plane, let
a.x + b.y + c.z = 1
in the camera coordinates (the origin is the optical center of the camera, XY forms the focal plane and Z the viewing direction).
Then a ray from the camera center to a point on the image at pixel coordinates (u, v) is given by
(u, v, f).t
where f is the focal length.
The ray hits the plane when
(a.u + b.v + c.f) t = 1,
i.e. at the point
(u, v, f) / (a.u + b.v + c.f)
Finally, the distance from the camera to the point is
p = √(u² + v² + f²) / (a.u + b.v + c.f)
This is the function that you need to tabulate. Assuming that f is known, you can determine the unknown coefficients a, b, c by taking three non-aligned points, measuring the image coordinates (u, v) and the distances, and solving a 3x3 system of linear equations.
From the last equation, you can then estimate the distance for any point of the image.
The focal distance can be measured (in pixels) by looking at a target of known size, at a known distance. By proportionality, the ratio of the distance over the size is f over the length in the image.
Most vision libraries (including opencv) have built in functions that will take a couple points from a camera reference frame and the related points from a Cartesian plane and generate your warp matrix (affine transformation) for you. (some are fancy enough to include non-linearity mappings with enough input points, but that brings you back to your time to calibrate issue)
A final note: most vision libraries use some type of grid to calibrate off of ie a checkerboard patter. If you wrote your calibration to work off of such a sheet, then you would only need to measure distances to 1 target object as the transformations would be calculated by the sheet and the target would just provide the world offsets.
I believe what you are after is called a Projective Transformation. The link below should guide you through exactly what you need.
Demonstration of calculating a projective transformation with proper math typesetting on the Math SE.
Although you can solve this by hand and write that into your code... I strongly recommend using a matrix math library or even writing your own matrix math functions prior to resorting to hand calculating the equations as you will have to solve them symbolically to turn it into code and that will be very expansive and prone to miscalculation.
Here are just a few tips that may help you with clarification (applying it to your problem):
-Your A matrix (source) is built from the 4 xy points in your camera image (pixel locations).
-Your B matrix (destination) is built from your measurements in in the real world.
-For fast recalibration, I suggest marking points on the ground to be able to quickly place the cube at the 4 locations (and subsequently get the altered pixel locations in the camera) without having to remeasure.
-You will only have to do steps 1-5 (once) during calibration, after that whenever you want to know the position of something just get the coordinates in your image and run them through step 6 and step 7.
-You will want your calibration points to be as far away from eachother as possible (within reason, as at extreme distances in a vanishing point situation, you start rapidly losing pixel density and therefore source image accuracy). Make sure that no 3 points are colinear (simply put, make your 4 points approximately square at almost the full span of your camera fov in the real world)
ps I apologize for not writing this out here, but they have fancy math editing and it looks way cleaner!
Final steps to applying this method to this situation:
In order to perform this calibration, you will have to set a global home position (likely easiest to do this arbitrarily on the floor and measure your camera position relative to that point). From this position, you will need to measure your object's distance from this position in both x and y coordinates on the floor. Although a more tightly packed calibration set will give you more error, the easiest solution for this may simply be to have a dimension-ed sheet(I am thinking piece of printer paper or a large board or something). The reason that this will be easier is that it will have built in axes (ie the two sides will be orthogonal and you will just use the four corners of the object and used canned distances in your calibration). EX: for a piece of paper your points would be (0,0), (0,8.5), (11,8.5), (11,0)
So using those points and the pixels you get will create your transform matrix, but that still just gives you a global x,y position on axes that may be hard to measure on (they may be skew depending on how you measured/ calibrated). So you will need to calculate your camera offset:
object in real world coords (from steps above): x1, y1
camera coords (Xc, Yc)
dist = sqrt( pow(x1-Xc,2) + pow(y1-Yc,2) )
If it is too cumbersome to try to measure the position of the camera from global origin by hand, you can instead measure the distance to 2 different points and feed those values into the above equation to calculate your camera offset, which you will then store and use anytime you want to get final distance.
As already mentioned in the previous answers you'll need a projective transformation or simply a homography. However, I'll consider it from a more practical view and will try to summarize it short and simple.
So, given the proper homography you can warp your picture of a plane such that it looks like you took it from above (like here). Even simpler you can transform a pixel coordinate of your image to world coordinates of the plane (the same is done during the warping for each pixel).
A homography is basically a 3x3 matrix and you transform a coordinate by multiplying it with the matrix. You may now think, wait 3x3 matrix and 2D coordinates: You'll need to use homogeneous coordinates.
However, most frameworks and libraries will do this handling for you. What you need to do is finding (at least) four points (x/y-coordinates) on your world plane/floor (preferably the corners of a rectangle, aligned with your desired world coordinate system), take a picture of them, measure the pixel coordinates and pass both to the "find-homography-function" of your desired computer vision or math library.
In OpenCV that would be findHomography, here an example (the method perspectiveTransform then performs the actual transformation).
In Matlab you can use something from here. Make sure you are using a projective transformation as transform type. The result is a projective tform, which can be used in combination with this method, in order to transform your points from one coordinate system to another.
In order to transform into the other direction you just have to invert your homography and use the result instead.
I am trying to use the PNP algorithm implementations in Open CV (EPNP, Iterative etc.) to get the metric pose estimates of cameras in a two camera pair (not a conventional stereo rig, the cameras are free to move independent of each other). My source of images currently is a robot simulator (Gazebo), where two cameras are simulated in a scene of objects. The images are almost ideal: i.e., zero distortion, no artifacts.
So to start off, this is my first pair of images.
I assume the right camera as "origin". In metric world coordinates, left camera is at (1,1,1) and right is at (-1,1,1) (2m baseline along X). Using feature matching, I construct the essential matrix and thereby the R and t of the left camera w.r.t. right. This is what I get.
R in euler angles: [-0.00462468, -0.0277675, 0.0017928]
t matrix: [-0.999999598978524; -0.0002907901840156801; -0.0008470441900959029]
Which is right, because the displacement is only along the X axis in the camera frame. For the second pair, the left camera is now at (1,1,2) (moved upwards by 1m).
Now the R and t of left w.r.t. right become:
R in euler angles: [0.0311084, -0.00627169, 0.00125991]
t matrix: [-0.894611301085138; -0.4468450866008623; -0.0002975759140359637]
Which again makes sense: there is no rotation; the displacement along Y axis is half of what the baseline (along X) is, so on, although this t doesn't give me the real metric estimates.
So in order to get metric estimates of pose in case 2, I constructed the 3D points using points from camera 1 and camera 2 in case 1 (taking the known baseline into account: which is 2m), and then ran the PNP algorithm with those 3D points and the image points from case 2. Strangely, both ITERATIVE and EPNP algorithms give me a similar and completely wrong result that looks like this:
Pose according to final PNP calculation is:
Rotation euler angles: [-9.68578, 15.922, -2.9001]
Metric translation in m: [-1.944911461358863; 0.11026997013253; 0.6083336931263812]
Am I missing something basic here? I thought this should be a relatively straightforward calculation for PNP given that there's no distortion etc. ANy comments or suggestions would be very helpful, thanks!
I'm doing a mobile augmented reality app. I need to calibrate my camera to get the intrinsic and extrinsic parameters using chessboard calibration.
Can I assum that if I calibrate my nexus 4, all nexus will have the same focal length, skew factor and distortion matrix ?
Thanks
Well, the answer can be both YES and NO. As you say, in real life none camera is exactly the same with another one, not even if they came from the same manufacturer. But, in order to make our lifes easier, yes we use this simplification, even for photogrammetric/computer vision projects, were the accuracy demands are quite high.
Most of the cameras come with undistortion operation coded into a camera pipeline so you most likely don't need to search for distortion parameters at all. Just check that straight lines at the image periphery are really straight. I expect the skew to be close to zero and fx=fy since pixels are square.
Apart from the parameters you mentioned there is also two for principal points Cx, Cy (intersection of an optical axis with the sensor that is often close to w/2, h/2). So overall you have only 3 parameters: F, Cx, Cy with the first one being the most variable among phones of the same model (from my experience). If you aren't using your phone to figure a relative position of another camera most likely you need to know only focal length accurately.
Obviously when you need to worry about a single parameter there are easier ways to get it than using a chessboard rig and trying to find extrinsic parameters in addition to the intrinsic ones. You can figure it out even without measurements - just quire a camera field of view (such as getHorizontalViewAngle()) and use
tan(fov) = image_width/2 / f
Alternatively you can do a simple measurement keeping your phone parallel to the target: for a vertical target of size H that produces image of h pixels you get f as
f/z = h/H
Well... if this camera has a built-in autofocus, the focal length will be changed all the time