I am having trouble with swift closure syntax. I am trying to check the mute switch using Sharkfood which you can see here: http://sharkfood.com/content/Developers/content/Sound%20Switch/
The Block I'm trying to call is shown below.
typedef void(^SharkfoodMuteSwitchDetectorBlock)(BOOL silent);
This is how I'm trying to call it but it isn't working. I've tried a ton of different ways and I know I'm missing something little since I'm new to swift. The error I'm getting is:
'(Bool) -> Void' is not convertible to 'Bool'
On the first line of this code:
muteDetector.silentNotify({
(silent: Bool) -> Void in
println("this")
println("worked")
})
Any help would be greatly appreciated.
Never used that library, but looking at the documentation linked in your question I notice that silentNotify is a property:
#property (nonatomic,copy) SharkfoodMuteSwitchDetectorBlock silentNotify;
containing the block, so the error stating that a BOOL is expected makes sense.
Instead with your code you are probably trying to call this method:
-(void)setSilentNotify:(SharkfoodMuteSwitchDetectorBlock)silentNotify{
_silentNotify = [silentNotify copy];
self.forceEmit = YES;
}
I don't know which of the 2 you are attempting to do - if you want to call the block, then you have to just provide a bool:
muteDetector.silentNotify(true)
if instead you want to register a new block (closure), then you have to use:
muteDetector.setSilentNotify({
(silent: Bool) -> Void in
println("this")
println("worked")
})
Related
Consider these lines:
I create a NSButton based class with this:
typealias onClickHandler = (NSTextfieldSuper)->Void
var onClick: onClickHandler?
When the user clicks on an instance of that button, I do this:
if (self.onClick != nil) {
onClick?(self)
}
I use that button later, from another class, with this:
let button = SuperButton()
button.onClick = { (textField: NSTextfieldSuper)->Void in
}
I am not sure if this is the correct syntax. I would like to process the button sent from the first closure on the parent class, where the button is created.
This was the only form I was able to type this without Xcode complaining. If this is correct, what is the purpose of this ->Void there? What could this possibly returning?
I just want to process that button sent.
By the way, as a bonus, I have to initialize several buttons with this, all running the same function. It would be nice to do something like
func doSomething () {
}
and then
let button = SuperButton()
button.onClick = doSomething
any ideas?
This was the only form I was able to type this without Xcode complaining. If this is correct, what is the purpose of this ->Void there? What could this possibly returning?
It is the same as in your typealias, in Swift a function type has the form:
(parameter definitions) -> return type
and functions which return nothing have a return type of Void (similar to C). The full form off a closure expression is:
{ (parameter definitions) ->return typeinbody}
Without any inference this expression provides the full type of the closure, and the -> Void Return type in your example specifies that your closure returns nothing. In your assignment this full type will be checked at compile time to conform to the type of onClick.
Now Swift will infer lots of stuff and there are various shorthands available for closure expressions, you will find that Swift accepts:
button.onClick = { textField in }
as well here with both the argument and return types of the closure being inferred.
By the way, as a bonus, [...] any ideas?
Just make the types match:
func doSomething(textField : NSTextfieldSuper) { }
button.onClick = doSomething
Unlike in (Objective-)C functions and closures (blocks in C) are interchangeable (as they are in plenty of other languages, C is the oddfellow here)
HTH
I'm trying to convert a lua bridge from Swift 2 to Swift 3. I am not the original author so there are aspects of the library I don't know very well and the original author seems not interested to continue working on the project. I have most of the conversion done but there remain one place I'm stuck and could not figure out. I've tried searching on SO and on the Internet but could not find anything that could help me solve the problem.
If anyone is interested in looking at the full source code, here is my fork of the project on github: https://github.com/weyhan/lua4swift (My changes is in the Swift3 branch)
Allow me setup the context to the error I'm stuck on. There is a Userdata class, specifically in the method userdataPointer<T>() -> UnsafeMutablePointer<T> the c function lua_touserdata returns the block address of userdata as a void * pointer type.
Original code written in Swift 2:
public class Userdata: StoredValue {
public func userdataPointer<T>() -> UnsafeMutablePointer<T> {
push(vm)
let ptr = lua_touserdata(vm.vm, -1)
vm.pop()
return UnsafeMutablePointer<T>(ptr)
}
public func toCustomType<T: CustomTypeInstance>() -> T {
return userdataPointer().memory
}
public func toAny() -> Any {
return userdataPointer().memory
}
override public func kind() -> Kind { return .Userdata }
}
After the conversion with Xcode 8 migration tool, Xcode is complaining about the return line with error Cannot invoke initializer for type 'UnsafeMutablePointer<T>' with an argument list of type '(UnsafeMutableRawPointer?)':
return UnsafeMutablePointer<T>(ptr)
I've fixed it with:
return (ptr?.assumingMemoryBound(to: T.self))!
Following that above change, now Xcode 8 is now complaining about the calling statement in createCustomType:
public func createCustomType<T: CustomTypeInstance>(setup: (CustomType<T>) -> Void) -> CustomType<T> {
lua_createtable(vm, 0, 0)
let lib = CustomType<T>(self)
pop()
setup(lib)
registry[T.luaTypeName()] = lib
lib.becomeMetatableFor(lib)
lib["__index"] = lib
lib["__name"] = T.luaTypeName()
let gc = lib.gc
lib["__gc"] = createFunction([CustomType<T>.arg]) { args in
let ud = args.userdata
// ******* Here's the line that is causing problem in Swift 3
(ud.userdataPointer() as UnsafeMutablePointer<Void>).destroy()
// *******
let o: T = ud.toCustomType()
gc?(o)
return .Nothing
}
if let eq = lib.eq {
lib["__eq"] = createFunction([CustomType<T>.arg, CustomType<T>.arg]) { args in
let a: T = args.customType()
let b: T = args.customType()
return .Value(eq(a, b))
}
}
return lib
}
Where I'm getting stuck is the line :
(ud.userdataPointer() as UnsafeMutablePointer<Void>).destroy()
I believe the original author is attempting to clear the memory block where the pointer returned by userdataPointer() call is pointing to.
With the Xcode 8 auto migration tool the above line is converted as below:
(ud.userdataPointer() as UnsafeMutableRawPointer).deinitialize()
However Xcode now is then complains that Cannot convert call result type 'UnsafeMutablePointer<_>' to expected type 'UnsafeMutableRawPointer'.
From my research, the change to the return line in userdataPointer seems correct, so I think the issue is with the cast to UnsafeMutableRawPointer. I've tried dropping the cast to UnsafeMutableRawPointer and invoke ud.userdataPointer().deinitialize() directly but I get this error Generic parameter 'T' could not be inferred.
Other things I've tried is to convert the UnsafeMutablePointer to UnsafeMutableRawPointer but It always result in Xcode 8 complaining one thing or another. Any suggestion on how to get this to work?
As you may have already found out, Swift 3 attempts to provide better type safety when it comes to pointers. UnsafeMutablePointer can now only represent a pointer to an instance of a known type. In Swift 2, a C void * was represented by UnsafeMutablePointer<Void>, allowing void and non-void pointers to be treated in the same way, including trying to call a de-initializer of the pointed-to type, which is what the destroy() method in the problematic line of code does:
(ud.userdataPointer() as UnsafeMutablePointer<Void>).destroy()
In Swift 3 the de-initializer on the pointee is called using the deinitialize() method of the UnsafeMutablePointer structure. It appears that the migration assistant got confused. The line
(ud.userdataPointer() as UnsafeMutableRawPointer).deinitialize()
makes little sense because (1) UnsafeMutablePointer cannot be converted using as to UnsafeMutableRawPointer;
(2) UnsafeMutableRawPointer has not deinitialize() method. In Swift 3, UnsafeMutableRawPointer is a special type to represent void*. It is actually quite understandable why the migration tool made this mistake: it blindly replaced destroy() with deinitialize() and UnsafeMutablePointer<Void> with the corresponding Swift 3 type UnsafeMutableRawPointer, without realizing that the conversion would not work.
I don't quite understand why calling destroy() on a void pointer would work in Swift 2. Maybe this was a bug in the program or some compiler trick allowed the correct de-initializer to be called. Without knowing enough about the code, I can't be more specific than to suggest analyzing it to figure out what is the type pointed to by that pointer on which destroy() was called. For example, if we know for sure that it is always the placeholder type T used on the following line:
let o: T = ud.toCustomType()
then the offending line simply becomes
(ud.userdataPointer() as UnsafeMutablePointer<T>).deinitialize()
We need the conversion in the parentheses to allow the compiler to infer the generic parameter.
Thank you for bringing up an interesting problem. BTW, once you get over this obstacle, you are likely to run into other problems. One thing that jumps out is that UnsafeMutablePointer has no .memory in Swift 3; you'll have to use .pointee instead.
Here's an update. After playing with Swift 2.2 on Linux, I realize that calling destroy() on an UnsafeMutablePointer<A> cast as UnsafeMutablePointer<Void> won't call A's deinitializer, even if it has one. So, you have to be careful with that line...
Try creating an instance of UnsafeMutableRawPointer instead of trying to cast it:
UnsafeMutableRawPointer<T>(ud.userdataPointer()).destroy()
[NOTE This question was originally formulated under Swift 2.2. It has been revised for Swift 4, involving two important language changes: the first method parameter external is no longer automatically suppressed, and a selector must be explicitly exposed to Objective-C.]
Let's say I have these two methods in my class:
#objc func test() {}
#objc func test(_ sender:AnyObject?) {}
Now I want to use Swift 2.2's new #selector syntax to make a selector corresponding to the first of these methods, func test(). How do I do it? When I try this:
let selector = #selector(test) // error
... I get an error, "Ambiguous use of test()." But if I say this:
let selector = #selector(test(_:)) // ok, but...
... the error goes away, but I'm now referring to the wrong method, the one with a parameter. I want to refer to the one without any parameter. How do I do it?
[Note: the example is not artificial. NSObject has both Objective-C copy and copy: instance methods, Swift copy() and copy(sender:AnyObject?); so the problem can easily arise in real life.]
[NOTE This answer was originally formulated under Swift 2.2. It has been revised for Swift 4, involving two important language changes: the first method parameter external is no longer automatically suppressed, and a selector must be explicitly exposed to Objective-C.]
You can work around this problem by casting your function reference to the correct method signature:
let selector = #selector(test as () -> Void)
(However, in my opinion, you should not have to do this. I regard this situation as a bug, revealing that Swift's syntax for referring to functions is inadequate. I filed a bug report, but to no avail.)
Just to summarize the new #selector syntax:
The purpose of this syntax is to prevent the all-too-common runtime crashes (typically "unrecognized selector") that can arise when supplying a selector as a literal string. #selector() takes a function reference, and the compiler will check that the function really exists and will resolve the reference to an Objective-C selector for you. Thus, you can't readily make any mistake.
(EDIT: Okay, yes you can. You can be a complete lunkhead and set the target to an instance that doesn't implement the action message specified by the #selector. The compiler won't stop you and you'll crash just like in the good old days. Sigh...)
A function reference can appear in any of three forms:
The bare name of the function. This is sufficient if the function is unambiguous. Thus, for example:
#objc func test(_ sender:AnyObject?) {}
func makeSelector() {
let selector = #selector(test)
}
There is only one test method, so this #selector refers to it even though it takes a parameter and the #selector doesn't mention the parameter. The resolved Objective-C selector, behind the scenes, will still correctly be "test:" (with the colon, indicating a parameter).
The name of the function along with the rest of its signature. For example:
func test() {}
func test(_ sender:AnyObject?) {}
func makeSelector() {
let selector = #selector(test(_:))
}
We have two test methods, so we need to differentiate; the notation test(_:) resolves to the second one, the one with a parameter.
The name of the function with or without the rest of its signature, plus a cast to show the types of the parameters. Thus:
#objc func test(_ integer:Int) {}
#nonobjc func test(_ string:String) {}
func makeSelector() {
let selector1 = #selector(test as (Int) -> Void)
// or:
let selector2 = #selector(test(_:) as (Int) -> Void)
}
Here, we have overloaded test(_:). The overloading cannot be exposed to Objective-C, because Objective-C doesn't permit overloading, so only one of them is exposed, and we can form a selector only for the one that is exposed, because selectors are an Objective-C feature. But we must still disambiguate as far as Swift is concerned, and the cast does that.
(It is this linguistic feature that is used — misused, in my opinion — as the basis of the answer above.)
Also, you might have to help Swift resolve the function reference by telling it what class the function is in:
If the class is the same as this one, or up the superclass chain from this one, no further resolution is usually needed (as shown in the examples above); optionally, you can say self, with dot-notation (e.g. #selector(self.test), and in some situations you might have to do so.
Otherwise, you use either a reference to an instance for which the method is implemented, with dot-notation, as in this real-life example (self.mp is an MPMusicPlayerController):
let pause = UIBarButtonItem(barButtonSystemItem: .pause,
target: self.mp, action: #selector(self.mp.pause))
...or you can use the name of the class, with dot-notation:
class ClassA : NSObject {
#objc func test() {}
}
class ClassB {
func makeSelector() {
let selector = #selector(ClassA.test)
}
}
(This seems a curious notation, because it looks like you're saying test is a class method rather than an instance method, but it will be correctly resolved to a selector nonetheless, which is all that matters.)
I want to add a missing disambiguation: accessing an instance method from outside the class.
class Foo {
#objc func test() {}
#objc func test(_ sender: AnyObject?) {}
}
From the class' perspective the full signature of the test() method is (Foo) -> () -> Void, which you will need to specify in order to get the Selector.
#selector(Foo.test as (Foo) -> () -> Void)
#selector(Foo.test(_:))
Alternatively you can refer to an instance's Selectors as shown in the original answer.
let foo = Foo()
#selector(foo.test as () -> Void)
#selector(foo.test(_:))
In my case (Xcode 11.3.1) the error was only when using lldb while debugging. When running it works properly.
I have a function of two closures
testNetworkAvailability(reachableBlock:, unreachableBlock:)
But when I hit enter for the autocompletion of closure placeholder, the second one unreachableBlock will delete the variable name along with it and causes an error.
For example, if I open up this closure placeholder by hitting enter, it will look like:
testNetworkAvailability(reachableBlock: { () -> Void in
<#code#>
}) { () -> Void in
<#code#>
}
As a matter of fact, as I copy this function to stackoverflow, the placeholder for these blocks reads as <#(() -> Void)?##() -> Void#>. It is so strange as it should be #() -> Void# only, shouldn't it?
Why is this and how to fix it?
As long as the last argument is a closure, Swift allows you to omit the parameter name and treat it as an inline block.
autoreleasepool {
// ...
}
See the documentation on trailing closures.
Should XCode's autocomplete prefer trailing closures than not is a topic for debate however.
I am trying to translate some objective-C Code into Swift. I added the Cocoapod "Masonry" for Autolayout to my project and added a Bridging-Header in order to able to use Objective-C Methods in Swift.
This ObjC Method:
[_tableView mas_makeConstraints:^(MASConstraintMaker *make) {
make.edges.equalTo(self.view);
}];
should be something like the following Closure:
tableView.mas_makeConstraints({ (make : MASConstraintMaker!) -> Void? in
make.edges.equalTo(self.view)
})
But I am getting an "Could not find member 'mas_makeConstraints'" which is not the error, as the method is indexed and autocomletion gives me the following:
tableView.mas_makeConstraints(block: ((MASConstraintMaker!) -> Void)?)
?!
Am I doing something wrong here?
Just my 2 cents if anyone encounter this case:
This objc
[productView mas_makeConstraints:^(MASConstraintMaker *make) {
make.left.equalTo(self.view.mas_left).with.offset(15);
make.right.equalTo(self.view.mas_right).with.offset(15);
make.top.equalTo(self.view.mas_top).with.offset(15);
make.height.equalTo(productView.mas_width);
}];
will turn into
productView.mas_makeConstraints{ make in
make.left.equalTo()(self.view.mas_left).with().offset()(15)
make.right.equalTo()(self.view.mas_right).with().offset()(-15)
make.top.equalTo()(self.view.mas_top).with().offset()(15)
make.height.equalTo()(productView.mas_width)
return ()
}
This piece here in the method signature:
(block: ((MASConstraintMaker!) -> Void)?)
...is telling you that the block argument is Optional, not the return value, which should be Void (not Void?, where you write (make: MASConstraintMaker!) -> Void?)
also: because Swift Type Inference you don't need to put the types in the block
also also: because Swift Trailing Closures you don't need to put a closure that is the final argument to a method inside of the argument list in parens (and since here it's the only argument, you can leave off the parens entirely)
so really your entire method call with block argument could be re-written as:
tableView.mas_makeConstraints { make in
make.edges.equalTo(self.view)
}
finally: it looks like the instance method you are calling on make.edges returns a block, and thanks to the Swift convenience feature of 'implicit return of single expression blocks' it's may be the case that your block is implicitly returning the value of that expression when it is expecting Void - so in the end, if the above doesn't work you may still need to explicitly return Void by writing your method call as:
tableView.mas_makeConstraints { make in
make.edges.equalTo(self.view)
return ()
}