I'm trying to load in heightmap data but I'm struggling to figure out how to work out the normals. Have looked online but can't seem to find anything useful.
I store the vertices using
m_HeightMapVtxCount = (m_HeightMapLength - 1) * m_HeightMapWidth * 2;
m_pVertices = new XMFLOAT3[m_HeightMapVtxCount];
Then the vertices are loaded in using
for (int l = 0; l < m_HeightMapLength - 1; ++l)
{
if(l % 2 == 0) //for every second row - start at the bottom left corner, continue to the right, one row up and continue to the left
{
for(int w = 0; w < m_HeightMapWidth; ++w)
{
m_pVertices[i++] = XMFLOAT3(m_pHeightMap[w + l * m_HeightMapWidth]); //bottom vertex
m_pVertices[i++] = XMFLOAT3(m_pHeightMap[w + (l + 1) * m_HeightMapWidth]); //top vertex
}
}
else //for the row above, add the vertices from right to left
{
for(int w = m_HeightMapWidth - 1; w >= 0; --w)
{
m_pVertices[i++] = XMFLOAT3(m_pHeightMap[w + l * m_HeightMapWidth]); //bottom vertex
m_pVertices[i++] = XMFLOAT3(m_pHeightMap[w + (l + 1) * m_HeightMapWidth]); //top vertex
}
}
}
I was able to calculate the normals using triangle lists, that was quite simple, but unsure of how to do it using strips
Related
I have two images with similar sizes that show similar scenes. How can we show two images in two frames and when panning or zooming in the left image, it pans and zooms in the right one? I don't want to concatenate the images though.
Is there a solution to do this? Both python or c++ OpenCV are fine.
About zoom in/out:
The basic idea is deciding the scale changed every time on mouse wheel. After you get the current scale (v.s. origin image) and correct region of image you want to show on screen, you can get the position and length of rectangle on scaled image. So you can draw this rectangle on scaled image.
In my github,checking OnMouseWheel () and RefreshSrcView () in Fastest_Image_Pattern_Matching/ELCVMatchTool/ELCVMatchToolDlg.cpp may give what you want.
About showing two images simutaneouly with same region:
use two picture boxes with MFC framework or other UI builder.
or use two cv::namedWindow () without framework
Effect:
Part of the code:
BOOL CELCVMatchToolDlg::OnMouseWheel (UINT nFlags, short zDelta, CPoint pt)
{
POINT pointCursor;
GetCursorPos (&pointCursor);
ScreenToClient (&pointCursor);
// TODO: 在此加入您的訊息處理常式程式碼和 (或) 呼叫預設值
if (zDelta > 0)
{
if (m_iScaleTimes == MAX_SCALE_TIMES)
return TRUE;
else
m_iScaleTimes++;
}
if (zDelta < 0)
{
if (m_iScaleTimes == MIN_SCALE_TIMES)
return TRUE;
else
m_iScaleTimes--;
}
CRect rect;
//GetWindowRect (rect);
GetDlgItem (IDC_STATIC_SRC_VIEW)->GetWindowRect (rect);//重要
if (m_iScaleTimes == 0)
g_dCompensationX = g_dCompensationY = 0;
int iMouseOffsetX = pt.x - (rect.left + 1);
int iMouseOffsetY = pt.y - (rect.top + 1);
double dPixelX = (m_hScrollBar.GetScrollPos () + iMouseOffsetX + g_dCompensationX) / m_dNewScale;
double dPixelY = (m_vScrollBar.GetScrollPos () + iMouseOffsetY + g_dCompensationY) / m_dNewScale;
m_dNewScale = m_dSrcScale * pow (SCALE_RATIO, m_iScaleTimes);
if (m_iScaleTimes != 0)
{
int iWidth = m_matSrc.cols;
int iHeight = m_matSrc.rows;
m_hScrollBar.SetScrollRange (0, int (m_dNewScale * iWidth - m_dSrcScale * iWidth) - 1 + BAR_SIZE);
m_vScrollBar.SetScrollRange (0, int (m_dNewScale * iHeight - m_dSrcScale * iHeight) - 1 + BAR_SIZE);
int iBarPosX = int (dPixelX * m_dNewScale - iMouseOffsetX + 0.5);
m_hScrollBar.SetScrollPos (iBarPosX);
m_hScrollBar.ShowWindow (SW_SHOW);
g_dCompensationX = -iBarPosX + (dPixelX * m_dNewScale - iMouseOffsetX);
int iBarPosY = int (dPixelY * m_dNewScale - iMouseOffsetY + 0.5);
m_vScrollBar.SetScrollPos (iBarPosY);
m_vScrollBar.ShowWindow (SW_SHOW);
g_dCompensationY = -iBarPosY + (dPixelY * m_dNewScale - iMouseOffsetY);
//滑塊大小
SCROLLINFO infoH;
infoH.cbSize = sizeof (SCROLLINFO);
infoH.fMask = SIF_PAGE;
infoH.nPage = BAR_SIZE;
m_hScrollBar.SetScrollInfo (&infoH);
SCROLLINFO infoV;
infoV.cbSize = sizeof (SCROLLINFO);
infoV.fMask = SIF_PAGE;
infoV.nPage = BAR_SIZE;
m_vScrollBar.SetScrollInfo (&infoV);
//滑塊大小
}
else
{
m_hScrollBar.SetScrollPos (0);
m_hScrollBar.ShowWindow (SW_HIDE);
m_vScrollBar.SetScrollPos (0);
m_vScrollBar.ShowWindow (SW_HIDE);
}
RefreshSrcView ();
return CDialogEx::OnMouseWheel (nFlags, zDelta, pt);
}
The Google Maps iOS SDK's heat map (more specifically the Google-Maps-iOS-Utils framework) decides the color to render an area in essentially by calculating the density of the points in that area.
However, I would like to instead select the color based on the average weight or intensity of the points in that area.
From what I understand, this behavior is not built in (but who knows––the documentation sort of sucks). The file where the color-picking is decided is I think in /src/Heatmap/GMUHeatmapTileLayer.mThis is a relatively short file, but I am not very well versed in Objective-C, so I am having some difficulty figuring out what does what. I think -tileForX:y:zoom: in GMUHeatmapTileLayer.m is the important function, but I'm not sure and even if it is, I don't quite know how to modify it. Towards the end of this method, the data is 'convolved' first horizontally and then vertically. I think this is where the intensities are actually calculated. Unfortunately, I do not know exactly what it's doing, and I am afraid of changing things because I suck at obj-c. This is what the convolve parts of this method look like:
- (UIImage *)tileForX:(NSUInteger)x y:(NSUInteger)y zoom:(NSUInteger)zoom {
// ...
// Convolve data.
int lowerLimit = (int)data->_radius;
int upperLimit = paddedTileSize - (int)data->_radius - 1;
// Convolve horizontally first.
float *intermediate = calloc(paddedTileSize * paddedTileSize, sizeof(float));
for (int y = 0; y < paddedTileSize; y++) {
for (int x = 0; x < paddedTileSize; x++) {
float value = intensity[y * paddedTileSize + x];
if (value != 0) {
// convolve to x +/- radius bounded by the limit we care about.
int start = MAX(lowerLimit, x - (int)data->_radius);
int end = MIN(upperLimit, x + (int)data->_radius);
for (int x2 = start; x2 <= end; x2++) {
float scaledKernel = value * [data->_kernel[x2 - x + data->_radius] floatValue];
// I THINK THIS IS WHERE I NEED TO MAKE THE CHANGE
intermediate[y * paddedTileSize + x2] += scaledKernel;
// ^
}
}
}
}
free(intensity);
// Convole vertically to get final intensity.
float *finalIntensity = calloc(kGMUTileSize * kGMUTileSize, sizeof(float));
for (int x = lowerLimit; x <= upperLimit; x++) {
for (int y = 0; y < paddedTileSize; y++) {
float value = intermediate[y * paddedTileSize + x];
if (value != 0) {
int start = MAX(lowerLimit, y - (int)data->_radius);
int end = MIN(upperLimit, y + (int)data->_radius);
for (int y2 = start; y2 <= end; y2++) {
float scaledKernel = value * [data->_kernel[y2 - y + data->_radius] floatValue];
// I THINK THIS IS WHERE I NEED TO MAKE THE CHANGE
finalIntensity[(y2 - lowerLimit) * kGMUTileSize + x - lowerLimit] += scaledKernel;
// ^
}
}
}
}
free(intermediate);
// ...
}
This is the method where the intensities are calculated for each iteration, right? If so, how can I change this to achieve my desired effect (average, not summative colors, which I think are proportional to intensity).
So: How can I have averaged instead of summed intensities by modifying the framework?
I think you are on the right track. To calculate average you divide the point sum by the point count. Since you already have the sums calculated, I think an easy solution would be to also save the count for each point. If I understand it correctly, this it what you have to do.
When allocating memory for the sums also allocate memory for the counts
// At this place
float *intermediate = calloc(paddedTileSize * paddedTileSize, sizeof(float));
// Add this line, calloc will initialize them to zero
int *counts = calloc(paddedTileSize * paddedTileSize, sizeof(int));
Then increase the count in each loop.
// Below this line (first loop)
intermediate[y * paddedTileSize + x2] += scaledKernel;
// Add this
counts[y * paddedTileSize + x2]++;
// And below this line (second loop)
finalIntensity[(y2 - lowerLimit) * kGMUTileSize + x - lowerLimit] += scaledKernel;
// Add this
counts[(y2 - lowerLimit) * kGMUTileSize + x - lowerLimit]++;
After the two loops you should have two arrays, one with your sums finalIntensity and one with your counts counts. Now go through the values and calculate the averages.
for (int y = 0; y < paddedTileSize; y++) {
for (int x = 0; x < paddedTileSize; x++) {
int n = y * paddedTileSize + x;
if (counts[n] != 0)
finalIntensity[n] = finalIntensity[n] / counts[n];
}
}
free(counts);
The finalIntensity should now contain your averages.
If you prefer, and the rest of the code makes it possible, you can skip the last loop and instead do the division when using the final intensity values. Just change any subsequent finalIntensity[n] to counts[n] == 0 ? finalIntensity[n] : finalIntensity[n] / counts[n].
I may have just solved the same issue for the java version.
My problem was having a custom gradient with 12 different values.
But my actual weighted data does not necessarily contain all intensity values from 1 to 12.
The problem is, the highest intensity value gets mapped to the highest color.
Also 10 datapoints with intensity 1 that are close by will get the same color as a single point with intensity 12.
So the function where the tile gets created is a good starting point:
Java:
public Tile getTile(int x, int y, int zoom) {
// ...
// Quantize points
int dim = TILE_DIM + mRadius * 2;
double[][] intensity = new double[dim][dim];
int[][] count = new int[dim][dim];
for (WeightedLatLng w : points) {
Point p = w.getPoint();
int bucketX = (int) ((p.x - minX) / bucketWidth);
int bucketY = (int) ((p.y - minY) / bucketWidth);
intensity[bucketX][bucketY] += w.getIntensity();
count[bucketX][bucketY]++;
}
// Quantize wraparound points (taking xOffset into account)
for (WeightedLatLng w : wrappedPoints) {
Point p = w.getPoint();
int bucketX = (int) ((p.x + xOffset - minX) / bucketWidth);
int bucketY = (int) ((p.y - minY) / bucketWidth);
intensity[bucketX][bucketY] += w.getIntensity();
count[bucketX][bucketY]++;
}
for(int bx = 0; bx < dim; bx++)
for (int by = 0; by < dim; by++)
if (count[bx][by] != 0)
intensity[bx][by] /= count[bx][by];
//...
I added a counter and count every addition to the intensities, after that I go through every intensity and calculate the average.
For C:
- (UIImage *)tileForX:(NSUInteger)x y:(NSUInteger)y zoom:(NSUInteger)zoom {
//...
// Quantize points.
int paddedTileSize = kGMUTileSize + 2 * (int)data->_radius;
float *intensity = calloc(paddedTileSize * paddedTileSize, sizeof(float));
int *count = calloc(paddedTileSize * paddedTileSize, sizeof(int));
for (GMUWeightedLatLng *item in points) {
GQTPoint p = [item point];
int x = (int)((p.x - minX) / bucketWidth);
// Flip y axis as world space goes south to north, but tile content goes north to south.
int y = (int)((maxY - p.y) / bucketWidth);
// If the point is just on the edge of the query area, the bucketing could put it outside
// bounds.
if (x >= paddedTileSize) x = paddedTileSize - 1;
if (y >= paddedTileSize) y = paddedTileSize - 1;
intensity[y * paddedTileSize + x] += item.intensity;
count[y * paddedTileSize + x] ++;
}
for (GMUWeightedLatLng *item in wrappedPoints) {
GQTPoint p = [item point];
int x = (int)((p.x + wrappedPointsOffset - minX) / bucketWidth);
// Flip y axis as world space goes south to north, but tile content goes north to south.
int y = (int)((maxY - p.y) / bucketWidth);
// If the point is just on the edge of the query area, the bucketing could put it outside
// bounds.
if (x >= paddedTileSize) x = paddedTileSize - 1;
if (y >= paddedTileSize) y = paddedTileSize - 1;
// For wrapped points, additional shifting risks bucketing slipping just outside due to
// numerical instability.
if (x < 0) x = 0;
intensity[y * paddedTileSize + x] += item.intensity;
count[y * paddedTileSize + x] ++;
}
for(int i=0; i < paddedTileSize * paddedTileSize; i++)
if (count[i] != 0)
intensity[i] /= count[i];
Next is the convolving.
What I did there, is to make sure that the calculated value does not go over the maximum in my data.
Java:
// Convolve it ("smoothen" it out)
double[][] convolved = convolve(intensity, mKernel, mMaxAverage);
// the mMaxAverage gets set here:
public void setWeightedData(Collection<WeightedLatLng> data) {
// ...
// Add points to quad tree
for (WeightedLatLng l : mData) {
mTree.add(l);
mMaxAverage = Math.max(l.getIntensity(), mMaxAverage);
}
// ...
// And finally the convolve method:
static double[][] convolve(double[][] grid, double[] kernel, double max) {
// ...
intermediate[x2][y] += val * kernel[x2 - (x - radius)];
if (intermediate[x2][y] > max) intermediate[x2][y] = max;
// ...
outputGrid[x - radius][y2 - radius] += val * kernel[y2 - (y - radius)];
if (outputGrid[x - radius][y2 - radius] > max ) outputGrid[x - radius][y2 - radius] = max;
For C:
// To get the maximum average you could do that here:
- (void)setWeightedData:(NSArray<GMUWeightedLatLng *> *)weightedData {
_weightedData = [weightedData copy];
for (GMUWeightedLatLng *dataPoint in _weightedData)
_maxAverage = Math.max(dataPoint.intensity, _maxAverage)
// ...
// And then simply in the convolve section
intermediate[y * paddedTileSize + x2] += scaledKernel;
if (intermediate[y * paddedTileSize + x2] > _maxAverage)
intermediate[y * paddedTileSize + x2] = _maxAverage;
// ...
finalIntensity[(y2 - lowerLimit) * kGMUTileSize + x - lowerLimit] += scaledKernel;
if (finalIntensity[(y2 - lowerLimit) * kGMUTileSize + x - lowerLimit] > _maxAverage)
finalIntensity[(y2 - lowerLimit) * kGMUTileSize + x - lowerLimit] = _maxAverage;
And finally the coloring
Java:
// The maximum intensity is simply the size of my gradient colors array (or the starting points)
Bitmap bitmap = colorize(convolved, mColorMap, mGradient.mStartPoints.length);
For C:
// Generate coloring
// ...
float max = [data->_maxIntensities[zoom] floatValue];
max = _gradient.startPoints.count;
I did this in Java and it worked for me, not sure about the C-code though.
You have to play around with the radius and you could even edit the kernel. Because I found that when I have a lot of homogeneous data (i.e. little variation in the intensities, or a lot of data in general) the heat map will degenerate to a one-colored overlay, because the gradient on the edges will get smaller and smaller.
But hope this helps anyway.
// Erik
I have a huge image ( about 63000 x 63000 pixels = 3969 Megapixels )
what i have done so far is i decided to make "tiles" of (1024 x 1024) and do my calculations based on these tiles, resulting in an 62 x 62 image tile grid!
(this works out very well and has the advantage of making the image viewable with zoom-in and zoom out, only viewn tiles are downsized for example)
But what i need now are the contours from the huge image!
i use the OpenCV function "findContours" to detect contours on each
one of the tiles.
i have added some overlap in the tiles so i get
overlapping contours ( 1 pixel overlap )
i used the offset parameter
of "findContours" to shift the contours to the right position
into the "virtual total image"
Here are some screenshot's i made from a demo application
What I want is this:
Now my questions:
is it possible to stitch the contours, my worst case is a contour which covers the total image... is there some library that can do this?
is there a library which works on a compressed version of the total image ( like rle for example )
is there a way to make opencv findcontours work on 1 bit binary images ?
Here's the code used by findcontours:
// Surf2DTiledData ...a gobject based class used for 2d tile management and viewing..
Surf2DTiledData* td = (Surf2DTiledData*)in_td;
int nr_hor_tiles = surf2_d_tiled_data_get_nr_hor_tiles(td);
int nr_ver_tiles = surf2_d_tiled_data_get_nr_ver_tiles(td);
int tile_size_x = surf2_d_tiled_data_get_tile_width(td);
int tile_size_y = surf2_d_tiled_data_get_tile_height(td);
contouring_data_obj = surf2_d_tiled_data_get_ContouringData(td);
p_contours = contouring_data_obj->p_contours;
p_border_contours = contouring_data_obj->p_border_contours;
g_return_if_fail(p_border_contours != NULL);
g_return_if_fail(p_contours != NULL);
for (y = 0; y < nr_ver_tiles; y++){
int x;
for (x = 0; x < nr_hor_tiles; x++){
int idx = x + y*nr_hor_tiles;
CvMemStorage *mem = contouring_data_obj->contour_storage[idx];
CvMat _src;
CvSeq *contours = NULL;
uchar* dataBuffer = (uchar*)p_data[x][y];
// the idea is to have some extra space available for the overlap
// detection of contours!
// the extra space is needed for the algorithm to check for
// overlaps of contours later on!
#define VIRT_BORDER_EXTEND 2
int virtual_x = x * tile_size_x - VIRT_BORDER_EXTEND;
int virtual_y = y * tile_size_y - VIRT_BORDER_EXTEND;
int virtual_width = tile_size_x + VIRT_BORDER_EXTEND * 2;
int virtual_height = tile_size_y + VIRT_BORDER_EXTEND * 2;
int x_off = -VIRT_BORDER_EXTEND;
int y_off = -VIRT_BORDER_EXTEND;
if (virtual_x < 0) {
virtual_width += virtual_x;
virtual_x = 0;
x_off = 0;
}
if (virtual_y < 0) {
virtual_height += virtual_y;
virtual_y = 0;
y_off = 0;
}
if ((virtual_x + virtual_width) > (nr_hor_tiles*tile_size_x)) {
virtual_width = nr_hor_tiles*tile_size_x - virtual_x;
}
if ((virtual_y + virtual_height) > (nr_ver_tiles*tile_size_y)) {
virtual_height = nr_ver_tiles*tile_size_y - virtual_y;
}
CvMat* _roi_mat = get_roi_mat(td,
virtual_x, virtual_y,
virtual_width, virtual_height);
// Use either this:
//mem = cvCreateMemStorage(0);
if (_roi_mat){
// CV_LINK_RUNS => different algorithm!!!!
int tile_off_x = tile_size_x * x;
int tile_off_y = tile_size_y * y;
CvPoint contour_shift = cvPoint(x_off + tile_off_x, y_off + tile_off_y);
int n = cvFindContours(_roi_mat, mem, &contours, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, contour_shift);
cvReleaseMat(&_roi_mat);
p_contours[x][y] = contours;
}
//cvReleaseMemStorage(&mem);
}
}
later i used opengl to make textures out of the tiles and for every tile there is a quad !
the opencv contours are not drawn as this could be too slow for now, but i draw their bounding boxes... which are drawn in opengl too..
I am trying to implement Hough Transform for line detection in an already pre-processed image.
So my input image is a black-white edge image, 0 - background and 255 - foreground. I do not wish to use the inbuilt HoughLines library by OpenCV.
I am actually stuck with creating the accumulator and increasing its values properly. I cant figure out where i went wrong, so here is my code block :
int diagonal = sqrt(height * height + width * width);
IplImage *acc = cvCreateImage (cvSize(180, 2 * diagonal),IPL_DEPTH_8U, 1);
unsigned char* accData = (unsigned char *)acc->imageData;
for (int i=0; i<height; i++)
{
for (int j=0; j<step; j++)
{
if (data[i*step + j] > 200)
{
for (int theta=0; theta<180; theta++)
{
int p = j * cos(theta) + i * sin(theta);
if (p > 0)
accData[theta*180 + p] += 1;
}
}
}
}
The output image that i get in acc is not what it should look like. I am not getting any sinusoids, instead only white patches here and there. Can anyone provide any feedback about where i went wrong ?
What I see there is that you don t use sinus with radians values but with degree values you could change it as follows:
int p = j * cos((double)theta*PI/180) + i * sin((double)theta*PI/180);
This is what I have for detecting collision.
public static bool IntersectPixels(Rectangle rectangleA, Color[] dataA, Rectangle rectangleB, Color[] dataB)
{
int top = Math.Max(rectangleA.Top, rectangleB.Top);
int bottom = Math.Min(rectangleA.Bottom, rectangleB.Bottom);
int left = Math.Max(rectangleA.Left, rectangleB.Left);
int right = Math.Min(rectangleA.Right, rectangleB.Right);
for (int y = top; y < bottom; y++)
{
for (int x = left; x < right; x++)
{
Color colorA = dataA[(x - rectangleA.Left) + (y - rectangleA.Top) * rectangleA.Width];
Color colorB = dataB[(x - rectangleB.Left) + (y - rectangleB.Top) * rectangleB.Width];
if (colorA.A != 0 && colorB.A != 0)
{
return true;
}
}
}
return false;
}:
It work fine until I want to animate stuff. So I have a texture sprite that have about 12 frame. what I need to do is get the color data array of each frame. This is how I get the color data array:
Color[] playerColorArray = new Color[playerColorArray.X * playerColorArray.Y];
PlayerTexture.GetData(playerColorArray);
CData = playerColorArray;
Now my guess is that i have to update the textureData everytime the frame changes
Is there a way to get the the color data from each frame only?
You can get an array of the complete sprite sheet texture and only use the current frame.
Let's say you have a sprite sheet and stride is the offset of a pixel to the pixel below it. This can be the sprite sheet's width. Furthermore, you have the position x0, y0 of the first pixel of the current frame. Then you just have to modify the index calculation:
int posXInFrame = (x - rectangleA.Left);
int posYInFrame = (y - rectangleA.Top);
Color colorA = dataA[(posXInFrame + x0) + (posYInFrame + y0) * stride];
Probably, you have calculated x0 and y0 somewhere else and can pass those values to the function.