ambiguous overloaded call to 'sign' Delphi - delphi

I am trying to use the function Sign() with a DOUBLE variable, but it keeps
giving me the erro message "ambiguous overloaded call to 'sign'".
This also happens when trying to use an INTEGER variable, or any variable for that matter.
Why is this happening, and how can this be fixed?
The code I am using is the following:
var
CB : double;
SignCB : TValueSign;
begin
CB := Random(1000)-500;
SignCB := Sign(CB);
end;

The Sign function that you are trying to call is Math.Sign. There are in fact multiple overloaded versions of that function, for the commonly used numeric types.
If the only Sign that is visible to your code are the overloads in the Math unit then you will not encounter that error. The only plausible conclusion is that you have defined another function named Sign that clashes.
One solution is to fully qualify the function call. Call Math.Sign() instead of Sign().
Perhaps a better solution would be to change the name of your Sign function. By using the same name as a primitive RTL function you are asking for future confusion. I would suggest that you take this latter course of action.

Related

A common ancestor for of object delegates in Delphi

Is there some common ancestor for Delphi delegates which are declared with of object clause?
I need to find a common ancestor for TNotifyEvent and my custom delegate:
TMyEvent = procedure(Sender: TObject; msg: stringh); of object;
to make an universal method for firing these events.
Should I use Pointer? or TObject?
You need to get down and dirty with the implementation details for method pointers. These are stored as a so-called double pointer value. One pointer for the subject of the method call (the instance) and one pointer for the method itself (the code).
You can use the type TMethod from the System unit to represent method pointers. Its declaration looks like so (with the comparison operators removed for simplicity):
type
TMethod = record
Code, Data: Pointer;
end;
You need to use a typecast to make assignments between these types:
uses
System.Classes;
var
Event: TNotifyEvent;
Method: TMethod;
begin
Method := TMethod(Event);
TMethod(Event) := Method;
end.
Obviously none of this is type-safe so you need to ensure correctness. The compiler cannot help you. There is nothing like the checked type conversion operator, as, to work with method pointers. That is, it is up to you that when you cast from TMethod to a specific method pointer type, you have to make sure that the TMethod instance really is an instance of the method pointer type to which you cast. Think of this whole process as being analogous to casting from a typed pointer to an untyped pointer, and then back again.
Now, if you are going to store arbitrary method pointers into TMethod instances, that's fine. But what happens when you subsequently need to fire these methods. You need to know which type of method pointer is really behind each TMethod instance. So that you know how to cast it, what arguments it needs, and so how to call it. That's going to mean you have to store extra information about the true type of the method, alongside the raw method itself.
So, I think that I have perhaps answered the question that you asked, but I'm not sure it's going to be of much use to you. To understand that I think we'd really need to know more about what you are trying to achieve, and what information you have, when.
For instance, if you know the arguments that are to be passed to the method at the time you need to store it away, you could use variable capture and wrap it in an anonymous method. That would allow you to retain type-safety and avoid any of the rather dubious casts that I demonstrate above. Perhaps you need partial application, as a means of adapting your non-homogeneous method pointers to have the same interface. In which case again anonymous methods can help.

What's the difference between "var" and "out" parameters?

What's the difference between parameters declared with var and those declared with out? How does the compiler treat them differently (e.g., by generating different code, or by changing which diagnostics it issues)? Or do the different modifiers merely allow the programmer to document intended use of the parameters? What effect do the types of the parameters have on the matter?
A var parameter will be passed by reference, and that's it.
An out parameter is also passed by reference, but it's assumed that the input value is irrelevant. For managed types, (strings, Interfaces, etc,) the compiler will enforce this, by clearing the variable before the routine begins, equivalent to writing param := nil. For unmanaged types, the compiler implements out identically to var.
Note that the clearing of a managed parameter is performed at the call-site and so the code generated for the function does not vary with out or var parameters.
There is not much difference, for the compiler that is. See Mason's answer for that.
Semantically, there is a big difference:
var tells the programmer that the routine could work with its current value,
out tells the programmer that the routine will ignore/discard its current value.
Slightly late but just for the record, I came across a case where var or out made a big difference.
I was working on a SOAP web service which exported the following method:
function GetUser( out User :TUser ) :TResult;
which was getting imported into C# as the equivalent of
function GetUser( out Result :TResult) :TUser;
when I changed the out to a var it it imported correctly.
I'm guessing that the Delphi SOAP invoker treats the function result as an out parameter and that having two out parameters confuses the Delphi SOAP routines. I'm not sure if there is a workaround to allow you to use out parameters.
I read earlier that out parameter is set to default by called function, but today I realized that it is not completely true. Value of out parameter is discarded by called routine, but if that routine does not change its value, caller can still get it initial value, which was assigned before passing to called thread.
For example:
procedure JustNothing(out x : integer);
begin
// do nothing
end;
procedure TestOutVar;
var i : Integer;
begin
i := 100;
JustNothing(i); // after this call, i will still be 100
end;

Record methods and const parameters in Delphi

It looks like the Delphi compiler does not honor const record parameters when
"records-with-methods" are involved.
Having not tried to abuse the const convention previously, I was a little surprised
to find the compiler accepted code like that:
type
TTest = record
Field : String;
procedure Update;
end;
procedure TTest.Update;
begin
Field := Field + '+1';
end;
procedure DoStuff(const t : TTest);
begin
ShowMessage(t.Field);
t.Update;
ShowMessage(t.Field);
end;
While if you try to do a
t.Field:='doh'; in DoStuff f.i., the compiler will properly complain, but you're allowed to call methods that modify the "const" record without even a hint or warning. So this is different behavior than for reference types (such as classes or dynamic arrays), where direct field writes are allowed (as const only restricts changes to the parameter itself).
Addendum: this allows to modify declared compile-time constants this way too, as in:
const
cTest : TTest = (Field : '1');
...
cTest.Update; // will show '1' then '1'+'1'
ShowMessage(cTest.Field); // will show '1' (because optimized at compile-time)
Is that an accepted/documented behavior? or just a compiler shortcoming?
const never places any restrictions on method calls in Delphi, be they on records or instances of classes. So I don't think there is anything inconsistent with the treatment of method calls.
If methods could not be called on record passed as a const parameter, then that would pretty much render records with methods useless. It would mean, for example, that a property getter could not be called. In order to place restrictions on such records passed as const, there would need to be an equivalent concept to the const member functions of C++. That would allow the compiler to know that certain methods were non-mutating.
David analyzed the restriction pretty well. If the compiler was to check out such details it could really do it with some penalty. Additionally I don't see anything wrong with the compiler's behaviour. The method which gets the record can't directly alter its data, but only when using the method it contains. The record in this case works like an object: you can in the same way an object as a const and still have the same problem you described, ie. the object's methods can be used to alter its data.
The benefit of the object is, that such methods can be declared to be private, which enables you to protect its data. You could even create an inherited class which does just that, namely hiding all possibility to alter its data. Maybe you want to try this approach?

Retrieve TProc from Generic Container

Just discovered something rather funny:
var
Queue : TQueue <TProc>;
MyProc : TProc;
...
MyProc := Queue.Dequeue;
I think you see what is intendend here. However, the compiler thinks I want to store the Queue.Dequeue method (type "procedure of object") in MyProc and reports an error
E2010 Incompatible Types: 'TProc' und 'Procedure of object'
The workaround I came up with goes like this
MyProc := TProc (Pointer (Queue.Dequeue));
Is there a more elegant solution?
There's a bit of syntactical ambiguity there about whether the name "Dequeue" refers to the function itself, or the function's return value. And since you're dealing with an anonymous method pointer which you can assign a normal function to, it's trying to interpret that as a function assignment, not a function result assignment. Casting it to a pointer is the wrong solution, as that would force the function assignment to go through, which would then cause all sorts of fun errors when you attempt to invoke MyProc.
The correct way to fix it is by removing the syntactical ambiguity. Put an empty parenthesis after Dequeue, so that the compiler is sure that you're calling the function and not simply referencing it by name, and then it'll work.
MyProc := Queue.Dequeue();
As Mason said, there's an ambiguity in the Delphi syntax. Where TFoo.Bar is a method, it's not clear that FooValue.Bar means to refer to the result of calling TFoo.Bar, or a method pointer (or reference) TFoo.Bar itself (with implied Self argument of FooValue).
In the comments of Mason's answer, Rob Kennedy seems to suggest that the compiler simply figure this out based on the types of everything involved. This isn't simple; the compiler already does a lot of work to figure out whether you mean to refer to a method pointer value or a method call. It actually parses expressions in a different way when the expected receiver is a method pointer (or reference, or function pointer) type. The effort is especially involved when overloads are brought into the picture: the compiler scans through every overload candidate and checks for method pointer types in every parameter position, and then parses arguments differently depending on whether or not that parameter position contains a function pointer in one of the overloads. Then, if an overload that expects a function pointer isn't matched, the compiler changes the parse tree from function pointer to method call. The overloading mechanism itself needs to figure out which to use when its doing value to parameter comparisons. It's pretty messy, and it would be great if we didn't make it messier.
A prefix-style operator like # or Addr() isn't much help in resolving this ambiguity, not least because functions may return function pointers, and so on; how many # do you need to inhibit implicit (no () necessary) calling to grab the right value out? So when anonymous methods were introduced, a change in the expression parsing was made: I introduced the possibility of using () to force an invocation.
You can read more about it here:
http://blog.barrkel.com/2008/03/odd-corner-of-delphi-procedural.html
and here:
http://blog.barrkel.com/2008/03/procedurally-typed-expressions-redux.html

how to safely bypass Delphi Error: "types of formal and actual parameters must be identical"

I need a way to write a generic procedure to act upon an object type or any of its descendants.
My first attempt was to declare
procedure TotalDestroy(var obj:TMyObject);
but when using it with a descendant object
type TMyNewerObject = class(TMyObject);
var someNewerObject: TMyNewerObject;
TotalDestroy(someNewerObject);
I get the infamous error "types of formal and actual parameters must be identical"
So, while strugling to find a solution, I looked at the source code of Delphi system FreeAndNil procedure. And I found this awesome declaration, along with this astonishing comment
{ FreeAndNil frees the given TObject instance and
sets the variable reference to nil.
Be careful to only pass TObjects to this routine. }
procedure FreeAndNil(var Obj);
It avoids the type checking error, but it uses no safety net.
My question is ... is there any safe way to check the type of an untyped var parameter?
or in other words, can you improve this Delphi source code so that the warning would not be needed?
procedure FreeAndNil(var Obj);
var
Temp: TObject;
begin
Temp := TObject(Obj);
Pointer(Obj) := nil;
Temp.Free;
end;
Let's examine what you want to do.
You want to call a method that takes X, passing in an object of type Y, where Y is a descendant of X. The snag, the parameter is a "var" parameter.
Let's analyze what you could do if that was possible.
type
TBase = class
end;
TDescendant = class(TBase)
end;
procedure Fiddle(var x: TBase);
begin
x := TDescendant.Create;
end;
type
TOtherDescendant = class(TBase)
end;
var a: TOtherDescendant;
a := TOtherDescendant.Create;
Fiddle(a);
Uh-oh, now a no longer contains an instance of TOtherDescendant, it contains an instance of TDescendant. That probably comes as a surprise to the code that follows the call.
You must not only consider what you intend to do with the syntax you propose, but effectively what you could do with the syntax.
You should read Eric Lipperts excellent blog post about similar issues in .NET, found here: Why do ref and out parameters not allow type variation?.
I've written about this before, using an example very similar to Lasse's:
Delphi Q&A: Why must the types of actual and formal var parameters be identical?
Unless you're writing an assignment statement to change the value of the input parameter itself, and not just one of its properties, you shouldn't pass a parameter by reference in the first place.
If you are writing an assignment statement to change the parameter's value, then the compiler message really is true, and you should heed it.
One reason for needing to by-pass the error is when you're writing a function like TApplication.CreateForm. Its job is to change the input parameter's value, and the type of the new value varies and cannot be determined at compile time. If you're writing such a function, then your only option with Delphi is to use an untyped var parameter, and then there is extra burden on both the caller and the receiver to make sure everything goes right. The caller needs to make sure it passes a variable that is capable of holding values of whatever type the function will put in it, and the function needs to make sure it stores a value of a type compatible with what the caller requested.
In the case of CreateForm, the caller passes in a class-reference literal and a variable of that class type. The function instantiates the class and stores the reference in the variable.
I don't think very highly of either CreateForm or FreeAndNil, largely because of the way their untyped parameters sacrifice type safety in return for comparatively little extra convenience. You haven't shown the implementation of your TotalDestroy function, but I suspect its var parameter will ultimately provide the same low utility as in those other two functions. See my articles on both:
When should I use FreeAndNil?
Why shouldn't I call Application.CreateForm?
In addition to what Lasse wrote, which is quite correct, most of the time you don't want to pass an object to a var parameter anyway.
An object is a reference type. What you see as the object is actually a reference to it. You would only want to pass an object reference to a var parameter if you wanted to change your object out for a new object. If you just want to be able to modify the members of the object, then you can do that by simply passing it to a normal parameter. Make method call take a TMyObject parameter instead of a var TMyObject parameter and it should work.
Of course, if you really are replacing the object, then feel free to disregard all this, and see Lasse's answer.
can you improve this Delphi source code so that the warning would not be needed?
Yes, you can get a type safe way to avoid the compiler error.
In the newest Delphi 10.4 Sidney, the FreeAndNil procedure has been changed into this:
procedure FreeAndNil(const [ref] Obj: TObject);
var
Temp: TObject;
begin
Temp := Obj;
TObject(Pointer(#Obj)^) := nil;
Temp.Free;
end;
It is type safe for objects and will catch errors when passing an interface reference for example.
The way to pass a parameter by const [ref] means that the parameter is passed by reference. Without the [ref] attribute, parameters with size equal and smaller than a pointer would otherwise be passed by value.
Here, even though the object is passed as a constant, the reference will be modified.
In that sense, it is not a perfect declaration, but will do its job better than the former implementation.
From New features in Delphi 10.4:
This means that incorrect usage of FreeAndNil will now cause a compiler error. In the past, incorrect usage would not be caught, leading to difficult bugs. Note that although the parameter is declared as const, the by-reference variable is indeed modified.
A new, but ‘not as bad’, class of incorrect calling is possible with this declaration of FreeAndNil: the method can be called passing in properties or a method result, as well as cast expressions, a type’s implicit conversion to TObject, etc. The nil-ed value will then be the temporary variable in the expression.

Resources