Why is there a lot of interest in the NLP and ML community for deep learning?
Why do they need approaches to learn complex non-linear relationships?
I guess the most interesteing things about deep learning is the capability of in an unsupervised way you can learn high level features.
Deep learning neural networks have recently have shown very powerful improvements in tasks in computer vision and NLP compared to some other machine learning methods that have been popular for longer.
At least in acoustic modelling for speech recognition, deep learning helps us get better features when compared to MFCCs.
For an in depth look at deep learning and why it is important and interesting, take a look at my article here http://simonwinder.com/2015/01/what-is-deep-learning/ I have been working on this stuff since the 90s and its bizarre to see it take off so suddenly.
Related
I am exploring the field of recommendation systems and all I can find are techniques utilizing deep learning. I would not like to work in the area of deep learning. Thus, are there other approaches to content recommendation systems other than deep learning? Or should I change the topic if I don't like deep learning? I would also like to work on graphs in the recommendation system but for content and not collaborative-based recommendations. Any resources are useful.
Deep Learning architeture perform very well on many real time use cases, like your own problem recomendation saystem.
If you cited problems clearly, then i suggest some archetectecture, by default you go with "sequential based archetecture like LSTM, GRU and Transformer. Netflix Recommender system
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 25 days ago.
Improve this question
What's the difference between reinforcement learning, deep learning, and deep reinforcement learning? Where does Q-learning fit in?
Reinforcement learning is about teaching an agent to navigate an environment using rewards. Q-learning is one of the primary reinforcement learning methods.
Deep learning uses neural networks to achieve a certain goal, such as recognizing letters and words from images.
Deep reinforcement learning is a combination of the two, using Q-learning as a base. But instead of using actual state-value pairs, this is often used in environments where the state-action space is so large that it would take too long for Q-learning to converge. By using neural networks, we can find other state-action pairs that are similar. This “function approximation” allows effective learning in environments with very large state-action spaces.
Deep learning is a method using neural networks to make function approximators to solve various problems.
Ex: Learning a function which takes an image as input and output the bounding boxes of objects in the image.
Reinforcement learning is a field in which we have an agent and we want that agent to perform a task i.e, goal based problems where we use trial and error learning methods.
Ex: Agent learning to move from one position on grid world to a goal position without falling in a pit present in between.
Deep reinforcement learning is a way to solve goal based problems using neural networks. This is because, when we want agents to perform task in real world or current games, the state space is very big.
It takes agent very long time to even visit each state once and we cannot use look up tables to store the value functions.
So, to tackle this problem we use neural networks to approximate the state to generalize the learning process
Ex: We use DQN to solve many atari games.
Q-learning : It is a temporal difference learning method, where we have a Q-table to look for best action possible in the current state based on Q value function.
For learning Q values we use the reward and the maximum possible next state Q value.
Q-learning basically falls under Reinforcement learning and its deep reinforcement learning analog is Deep Q network (DQN).
The goal of machine learning methods is to learn rules from data and make predictions and/or decisions based on them.
The learning process can be done in a(n) supervised, semi-supervised, unsupervised, reinforcement learning fashion.
In reinforcement learning (RL), an agent interacts with an environment and learns an optimal policy, by trial and error (using reward points for successful actions and penalties for errors). It is used in sequential decision making problems [1].
Deep learning as a sub-field of machine learning is a mathematical framework for learning latent rules in the data or new representations of the data at hand. The term "deep" refer to the number of learning layers in the framework. Deep learning can be used with any of aforementioned learning strategies, i.e., supervised, semi-supervised, unsupervised, and reinforcement learning.
A deep reinforcement learning technique is obtained when deep learning is utilized by any of the components of reinforcement learning [1]. Note that Q-learning is a component of RL used to tell an agent that what action needs to be taken in what situation. Detailed information can be found in [1].
[1] Li, Yuxi. "Deep reinforcement learning: An overview." arXiv preprint arXiv:1701.07274 (2017).
Reinforcement learning refers to finish -oriented algorithms, which learn how to attain a coordination compound objective (goal) or maximize along a particular dimension over many steps. The basic theme behind Reinforcement learning is that an agentive role will learn from the environment by interacting with it and getting rewards for performing actions.
Deep Learning uses multiple layers of nonlinear processing units to extract feature and transformation
Deep Reinforcement Learning approach introduces deep neural networks to solve Reinforcement Learning problems thus they are named “deep.”
There's more distinction between reinforcement learning and supervised learning, both of which can use deep neural networks aka deep learning. In supervised learning - training set is labeled by a human (e.g. AlphaGo). In reinforcement learning (e.g. AlphaZero)- the algorithm is self-taught.
To put it in simple words,
Deep Learning - It's uses the model of neural network(mimicking the brain , neurons) and deep learning is used in image classification , data analyzing and in reinforcement learning too.
Reinforcement learning - This is a branch of machine learning, that revolves around an agent (ex: clearing robot) taking actions(ex: moving around searching trash) in it's environment(ex:home) and getting rewards(ex: collecting trash)
Deep-Reinforcement learning - This is one among the list of algorithms reinforcement learning has , this algorithm utilizes deep learning concepts.
Reinforcement learning (RL) is a type of machine learning that is mainly motivated by the feedback control of systems. RL is usually considered a type of optimal control that learns through interacting with a system/environment and getting feedback. RL usually replaces the computationally expensive dynamic programming methods with single time-step/multi time-step learning rule. Popular temporal difference methods in RL are considered somewhere in between dynamic programming and monte carlo methods. Classic RL methods use tabular algorithms that are not that scalable.
Deep learning (DL) is considered crucial part of modern machine learning (classical machine learning usually mean SVM, liner regression etc.). DL uses deep multilayered neural networks (NN) with backpropagation for learning. By using well designed deep NN networks complex input-output relations can be learned. Because of this property of approximating very complex functions DL have been extremely popular in recent years (2010-ish), especially in natural language tasks and computer vision tasks. One of the attractive aspect of DL is that these models can be end-to-end, meaning we do not need to do manual feature engineering. There are numerous types of DL algorithms, like Deep neural networs, convolutional neural networks, GRU, LSTM, GAN, attention, transfromer etc.
Deep RL uses deep NN architectures to replace the tabular methods for very high dimensional problems. Informally speaking, the controller is no longer a table look-up rather we use a deep NN as the controller. Because of leveraging deep NN in RL this is commonly known as deep RL.
roughly speaking:
deep learning uses deep neural networks to approximate complicated functions.
reinforcement learning is a branch in machine learning where your learner learns through interaction with environment. It is different from supervised or unsupervised learning.
if you use deep learning to approximate functions in reinforcement learning you call it deep reinforcement learning.
Reinforcement learning is a type of artificial intelligence that aims to model human-like decision-making. It's based on the idea that humans learn from their actions and reward themselves for doing things that are good, and punish themselves for doing things that are bad. Reinforcement learning algorithms try to replicate this process by changing the value of some variable in response to an action.
Deep learning is a type of machine learning model which uses multiple layers of processing to solve problems more effectively than traditional approaches. Deep learning models can be used for image recognition, speech recognition, and translation.
Deep reinforcement learning is a type of deep learning model that tries to solve problems by using sequences of actions called episodes to improve over time as well as by comparing results from different episodes. It's also known as Q-learning because it was first described by Richard Sutton in 1997 using the Q function (the fourth derivative).
Q-learning is a particular type of deep reinforcement learning algorithm that makes use of Q values (quantified measures) instead of actual rewards or penalties, which means it can be used without having access to real data or rewards/penalties yet still produce useful results
In Wikipedia I found that machine learning is a subsection of neural networks science. So, does it mean that work with machine learning is itself implies working with neural networks or not?
What will be better to use for pattern recognition tasks in terms of efficiency and complexity?
Machine learning is a part of neural network? I'd be surprised because machine learning includes dozen of techniques that have nothing to do with neural network. It's most likely the other way around.
The exact pattern recognition algorithm depends on your requirement and data set. There're many such algorithms, for example, SVM, linear models for classification, HMM, PCA etc. Note that the phase "pattern recognition" is a very general term, there is no algorithm that always work. It all depends on what patterns you are looking and what kind of assumption you can make.
I recommend Dr Bishop's "Pattern Recognition and Machine Learning" book, you'll learn a lot from the book.
I am planning to create a Tetris AI using artificial neural network and train it with genetic algorithm for a project in my high school computer science class. I have a basic understanding of how an ANN works and how to implement it with a genetic algorithm. I have already written a working Neural Network based on this tutorial and I'm currently working on a genetic algorithm.
My questions are:
Which GA model is better for this situation (Tetris), and why?
What should I use for input for the neural network? Because currently, the method I'm using is to simply convert the state of the board (the pieces) into a one dimensional array and feed it into the neural network? Is there a better approach?
What should the size (number of layers, neurons per layer) the neural network be?
Are there any good sources of information that can help me?
Thank you!
Similar task was already solved by Google, but they solved it for all kinds of Atari games - https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf.
Carefully read this article and all of the related articles too
This is a reinforcement learning task, in my opinion the hardest task in ML domain. So there will be no short answer for your questions - except that probably you shouldn't use GA heuristic at all and rely on reinforcements methods.
Many machine learning competitions are held in Kaggle where a training set and a set of features and a test set is given whose output label is to be decided based by utilizing a training set.
It is pretty clear that here supervised learning algorithms like decision tree, SVM etc. are applicable. My question is, how should I start to approach such problems, I mean whether to start with decision tree or SVM or some other algorithm or is there is any other approach i.e. how will I decide?
So, I had never heard of Kaggle until reading your post--thank you so much, it looks awesome. Upon exploring their site, I found a portion that will guide you well. On the competitions page (click all competitions), you see Digit Recognizer and Facial Keypoints Detection, both of which are competitions, but are there for educational purposes, tutorials are provided (tutorial isn't available for the facial keypoints detection yet, as the competition is in its infancy. In addition to the general forums, competitions have forums also, which I imagine is very helpful.
If you're interesting in the mathematical foundations of machine learning, and are relatively new to it, may I suggest Bayesian Reasoning and Machine Learning. It's no cakewalk, but it's much friendlier than its counterparts, without a loss of rigor.
EDIT:
I found the tutorials page on Kaggle, which seems to be a summary of all of their tutorials. Additionally, scikit-learn, a python library, offers a ton of descriptions/explanations of machine learning algorithms.
This cheatsheet http://peekaboo-vision.blogspot.pt/2013/01/machine-learning-cheat-sheet-for-scikit.html is a good starting point. In my experience using several algorithms at the same time can often give better results, eg logistic regression and svm where the results of each one have a predefined weight. And test, test, test ;)
There is No Free Lunch in data mining. You won't know which methods work best until you try lots of them.
That being said, there is also a trade-off between understandability and accuracy in data mining. Decision Trees and KNN tend to be understandable, but less accurate than SVM or Random Forests. Kaggle looks for high accuracy over understandability.
It also depends on the number of attributes. Some learners can handle many attributes, like SVM, whereas others are slow with many attributes, like neural nets.
You can shrink the number of attributes by using PCA, which has helped in several Kaggle competitions.