Choosing random_state for sklearn algorithms - machine-learning

I understand that random_state is used in various sklearn algorithms to break tie between different predictors (trees) with same metric value (say for example in GradientBoosting). But the documentation does not clarify or detail on this. Like
1 ) where else are these seeds used for random number generation ? Say for RandomForestClassifier , random number can be used to find a set of random features to build a predictor. Algorithms which use sub sampling, can use random numbers to get different sub samples. Can/Is the same seed (random_state) playing a role in multiple random number generations ?
What I am mainly concerned about is
2) how far reaching is the effect of this random_state variable. ? Can the value make a big difference in prediction (classification or regression). If yes, what kind of data sets should I care for more ? Or is it more about stability than quality of results?
3) If it can make a big difference, how best to choose that random_state?. Its a difficult one to do GridSearch on, without an intuition. Specially if the data set is such that one CV can take an hour.
4) If the motive is to only have steady result/evaluation of my models and cross validation scores across repeated runs, does it have the same effect if I set random.seed(X) before I use any of the algorithms (and use random_state as None).
5) Say I am using a random_state value on a GradientBoosted Classifier, and I am cross validating to find the goodness of my model (scoring on the validation set every time). Once satisfied, I will train my model on the whole training set before I apply it on the test set. Now, the full training set has more instances than the smaller training sets in the cross validation. So the random_state value can now result in a completely different behavior (choice of features and individual predictors) when compared to what was happening within the cv loop. Similarly things like min samples leaf etc can also result in a inferior model now that the settings are w.r.t the number of instances in CV while the actual number of instances is more. Is this a correct understanding ? What is the approach to safeguard against this ?

Yes, the choice of the random seeds will impact your prediction results and as you pointed out in your fourth question, the impact is not really predictable.
The common way to guard against predictions that happen to be good or bad just by chance is to train several models (based on different random states) and to average their predictions in a meaningful way. Similarly, you can see cross validation as a way to estimate the "true" performance of a model by averaging the performance over multiple training/test data splits.

1 ) where else are these seeds used for random number generation ? Say for RandomForestClassifier , random number can be used to find a set of random features to build a predictor. Algorithms which use sub sampling, can use random numbers to get different sub samples. Can/Is the same seed (random_state) playing a role in multiple random number generations ?
random_state is used wherever randomness is needed:
If your code relies on a random number generator, it should never use functions like numpy.random.random or numpy.random.normal. This approach can lead to repeatability issues in unit tests. Instead, a numpy.random.RandomState object should be used, which is built from a random_state argument passed to the class or function.
2) how far reaching is the effect of this random_state variable. ? Can the value make a big difference in prediction (classification or regression). If yes, what kind of data sets should I care for more ? Or is it more about stability than quality of results?
Good problems should not depend too much on the random_state.
3) If it can make a big difference, how best to choose that random_state?. Its a difficult one to do GridSearch on, without an intuition. Specially if the data set is such that one CV can take an hour.
Do not choose it. Instead try to optimize the other aspects of classification to achieve good results, regardless of random_state.
4) If the motive is to only have steady result/evaluation of my models and cross validation scores across repeated runs, does it have the same effect if I set random.seed(X) before I use any of the algorithms (and use random_state as None).
As of Should I use `random.seed` or `numpy.random.seed` to control random number generation in `scikit-learn`?, random.seed(X) is not used by sklearn. If you need to control this, you could set np.random.seed() instead.
5) Say I am using a random_state value on a GradientBoosted Classifier, and I am cross validating to find the goodness of my model (scoring on the validation set every time). Once satisfied, I will train my model on the whole training set before I apply it on the test set. Now, the full training set has more instances than the smaller training sets in the cross validation. So the random_state value can now result in a completely different behavior (choice of features and individual predictors) when compared to what was happening within the cv loop. Similarly things like min samples leaf etc can also result in a inferior model now that the settings are w.r.t the number of instances in CV while the actual number of instances is more. Is this a correct understanding ? What is the approach to safeguard against this ?
How can I know training data is enough for machine learning's answers mostly state that the more data the better.
If you do a lot of model-selection, maybe Sacred can help, too. Among other things, it sets and can log the random seed for each evaluation, f.ex.:
>>./experiment.py with seed=123

During the experiment, for tune-up and reproducibility, you fix temporarily random state but you repeat the experiment with different random states and take the mean of the results.
import os
# Set a Random State value
RANDOM_STATE = 42
# Set Python a random state
os.environ['PYTHONHASHSEED'] = str(RANDOM_STATE)
# Set Python random a fixed value
import random
random.seed(RANDOM_STATE)
# Set numpy random a fixed value
import numpy as np
np.random.seed(RANDOM_STATE)
# Set other library like TensorFlow random a fixed value
import tensorflow as tf
tf.set_seed(RANDOM_STATE)
os.environ['TF_DETERMINISTIC_OPS'] = '1'
os.environ['TF_CUDNN_DETERMINISTIC'] = '1'
# Eventually don't forget to set random_state parameter in function like
RandomizedSearchCV(random_state = RANDOM_STATE, ...)
For production system, you remove random state by setting it to None
# Set a Random State value
RANDOM_STATE = None

Related

K Nearest Neighbour Classifier - random state for train test split leads to different accuracy scores

I'm fairly new to data analysis and machine learning. I've been carrying out some KNN classification analysis on a breast cancer dataset in python's sklearn module. I have the following code which attemps to find the optimal k for classification of a target variable.
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
breast_cancer_data = load_breast_cancer()
training_data, validation_data, training_labels, validation_labels = train_test_split(breast_cancer_data.data, breast_cancer_data.target, test_size = 0.2, random_state = 40)
results = []
for k in range(1,101):
classifier = KNeighborsClassifier(n_neighbors = k)
classifier.fit(training_data, training_labels)
results.append(classifier.score(validation_data, validation_labels))
k_list = range(1,101)
plt.plot(k_list, results)
plt.ylim(0.85,0.99)
plt.xlabel("k")
plt.ylabel("Accuracy")
plt.title("Breast Cancer Classifier Accuracy")
plt.show()
The code loops through 1 to 100 and generates 100 KNN models with 'k' set to incremental values in the range 1 to 100. The performance of each of those models is saved to a list and a plot is generated showing 'k' on the x-axis and model performance on the y-axis.
The problem I have is that when I change the random_state parameter when spliting the data into training and testing partitions this results in completely different plots indicating varying model performance for different 'k'values for different dataset partitions.
For me this makes it difficult to decide which 'k' is optimal as the algorithm performs differently for different 'k's using different random states. Surely this doesn't mean that, for this particular dataset, 'k' is arbitrary? Can anyone help shed some light on this?
Thanks in anticipation
This is completely expected. When you do the train-test-split, you are effectively sampling from your original population. This means that when you fit a model, any statistic (such as a model parameter estimate, or a model score) will it self be a sample estimate taken from some distribution. What you really want is a confidence interval around this score and the easiest way to get that is to repeat the sampling and remeasure the score.
But you have to be very careful how you do this. Here are some robust options:
1. Cross Validation
The most common solution to this problem is to use k-fold cross-validation. In order not to confuse this k with the k from knn I'm going to use a capital for cross-validation (but bear in mind this is not normal nomenclature) This is a scheme to do the suggestion above but without a target leak. Instead of creating many splits at random, you split the data into K parts (called folds). You then train K models each time on K-1 folds of the data leaving aside a different fold as your test set each time. Now each model is independent and without a target leak. It turns out that the mean of whatever success score you use from these K models on their K separate test sets is a good estimate for the performance of training a model with those hyperparameters on the whole set. So now you should get a more stable score for each of your different values of k (small k for knn) and you can choose a final k this way.
Some extra notes:
Accuracy is a bad measure for classification performance. Look at scores like precision vs recall or AUROC or f1.
Don't try program CV yourself, use sklearns GridSearchCV
If you are doing any preprocessing on your data that calculates some sort of state using the data, that needs to be done on only the training data in each fold. For example if you are scaling your data you can't include the test data when you do the scaling. You need to fit (and transform) the scaler on the training data and then use that same scaler to transform on your test data (don't fit again). To get this to work in CV you need to use sklearn Pipelines. This is very important, make sure you understand it.
You might get more stability if you stratify your train-test-split based on the output class. See the stratify argument on train_test_split.
Note the CV is the industry standard and that's what you should do, but there are other options:
2. Bootstrapping
You can read about this in detail in introduction to statistical learning section 5.2 (pg 187) with examples in section 5.3.4.
The idea is to take you training set and draw a random sample from it with replacement. This means you end up with some repeated records. You take this new training set, train and model and then score it on the records that didn't make it into the bootstrapped sample (often called out-of-bag samples). You repeat this process multiple times. You can now get a distribution of your score (e.g. accuracy) which you can use to choose your hyper-parameter rather than just the point estimate you were using before.
3. Making sure you test set is representative of your validation set
Jeremy Howard has a very interesting suggestion on how to calibrate your validation set to be a good representation of your test set. You only need to watch about 5 minutes from where that link starts. The idea is to split into three sets (which you should be doing anyway to choose a hyper parameter like k), train a bunch of very different but simple quick models on your train set and then score them on both your validation and test set. It is OK to use the test set here because these aren't real models that will influence your final model. Then plot the validation scores vs the test scores. They should fall roughly on a straight line (the y=x line). If they do, this means the validation set and test set are both either good or bad, i.e. performance in the validation set is representative of performance in the test set. If they don't fall on this straight line, it means the model scores you get from you validation set are not indicative of the score you'll get on unseen data and thus you can't use that split to train a sensible model.
4. Get a larger data set
This is obviously not very practical for your situation but I thought I'd mention it for completeness. As your sample size increases, your standard error drops (i.e. you can get tighter bounds on your confidence intervals). But you'll need more training and more test data. While you might not have access to that here, it's worth keeping in mind for real world situations where you can assess the trade-off of the cost of gathering new data vs the desired accuracy in assessing your model performance (and probably the performance itself too).
This "behavior" is to be expected. Of course you get different results, when training and test is split differently.
You can approach the problem statistically, by repeating each 'k' several times with new train-validation-splits. Then take the median performance for each k. Or even better: look at the performance distribution and the median. A narrow performance distribution for a given 'k' is also a good sign that the 'k' is chosen well.
Afterwards you can use the test set to test your model

Random Forest - Max Features

I do have a question and I need your support. I have a data set which I am analyzing. I need to predict a target. To do this I did some data cleaning, among others drop highly (linear correlated feautes)
After preparing my data I applied random forest regressor (it is a regression problem). I am stucked a bit, since I really cannot catch the meaning and thus the value for max_features
I found the following page answer, where it is written
features=n_features for regression is a mistake on scikit's part. The original paper for RF gave max_features = n_features/3 for regression
I do get different results if I use max_features=sqrt(n) or max_features=n_features
Can any1 give me a good explanation how to approach this parameter?
That would be really great
max_features is a parameter that needs to be tuned. Values such as sqrt or n/3 are defaults and usually perform decently, but the parameter needs to be optimized for every dataset, as it will depend on the features you have, their correlations and importances.
Therefore, I suggest training the model many times with a grid of values for max_features, trying every possible value from 2 to the total number of your features. Train your RandomForestRegressor with oob_score=True and use oob_score_ to assess the performance of the Forest. Once you have looped over all possible values of max_features, keep the one that obtained the highest oob_score.
For safety, keep the n_estimators on the high end.
PS: this procedure is basically a grid search optimization for one parameter, and is usually done via Cross Validation. Since RFs give you OOB scores, you can use these instead of CV scores, as they are quicker to compute.

Why is permutation used in the knn classifier?

I am new to ML and I don't understand why a random permutation is used for KNN. I am referring to http://www.scipy-lectures.org/advanced/scikit-learn/ in the k-Nearest neighbors classifier section. The following code was provided:
>>> perm = np.random.permutation(iris.target.size)
>>> iris.data = iris.data[perm]
>>> iris.target = iris.target[perm]
>>> knn.fit(iris.data[:100], iris.target[:100])
KNeighborsClassifier(...)
>>> knn.score(iris.data[100:], iris.target[100:])
0.95999...
And this question was asked: Bonus question: why did we use a random permutation?
Can someone help explain why a permutation would affect the results?
Iris is by default sorted, first 50 instances form class 1, next class 2, and last class 3. So they would train solely on class 1 and 2 and try to predict labels of class 3 if they do not permute. In general it is a good practise to start from permuting data, as they can always be some kind of structure involved due to the approach taken by the dataset creator.
It is very likely that your dataset has sorting or groupings that you are not aware of. Usually you separate your model in training, test, and validation. At first glance in knn that is not explicitly required, because the algorithm in purely online. Let's see how it works,
A1. A data set is given.
A2. A candidate point is given
A3. The candidate point is classified with a majority voting of the k nearest neighbor classes.
However that is the case when the data set encompasses all the required knowledge, i.e. It is the ground truth.
In case that the dataset is not as such that we randomize and separate in training and validation, then we classify against train and check against validation to see if the training was successful. This is an iterative process of randomization and test until we get a train set that nicely evaluates on the validation set. Once this process is finished the test set is used to evaluate the generalization ability of the process.

Information leakage in Cross-validation

Description of classification problem:
Assume a regular dataset X with n samples and d features.
This classification problem is somewhat hard (many features, few samples, low overall AUC ~70%).
It might be useful to mention that feature selection/extraction, dimension reduction, kernels, many classifiers have been applied. So I am not interested in trying these.
I am not looking forward to see an improvement in overall AUC. The goal is to find relevant features in haystack of features.
Description of my approach:
I select all pairwise combination of d features and create many two dimensional sub-datasets x with n samples.
On each sub-dataset x, I perform a 10-fold cross-validation (using all samples of the main dataset X). A very long process, assume weeks of computation.
I select top k pairs (according to highest AUC for example) and label them as +. All other pairs are labeled as -.
For each pair, I can compute several properties (e.g. relations between each pair using Expert's knowledge). These properties can be calculated without using the labels in main dataset X.
Now I have pairs which are labeled as + or -. In addition, each pair has many properties calculated based on Expert's knowledge (i.e. features). Hence, I have a new classification problem. Lets call this newly generated dataset Y.
I train a classifier on Y while following cross-validation rules. Surprisingly, I can predict the + and - labels with 90% AUC.
As far as I can see, it means that I am able to select relevant features. However, seeing a 90% AUC makes me worried about information leakage somewhere in this long process. Specially in step 3.
I was wondering if anyone can see any leakage in this approach.
Information Leakage:
Incorporation of target labels in the actual features. Your classifier will produce good prediction while did not learn anything.
Showing your test set to you classifier during the training phase. Your classifier will "memorize" the test set and its corresponding labels without "learning" anything.
Update 1:
I want to stress that indeed I am using all data points of X in step 1. However, I am not using them ever again (even for testing). The final 90% AUC is obtained from predicting labels of dataset Y.
On the other hand, it would be useful to note that, even if I randomize the values of my main dataset X, the computed features for dataset Y is going to be the same. However, the sample labels in Y would change because the previous + pairs might not be a good one anymore. Therefore they will be labeled as -.
Update 2:
Although I haven't got any opinion, I am going to state what I have got during 4 days of talking with pattern recognition researchers. Briefly I became confident that there is no information leakage (as long as I wont go back to the first dataset X and using its labels). Later on, in case I wanted to check to see if I could have better performance in X (i.e. predicting sample labels), I need to use only a part of dataset X for pairwise comparison (as training set). Then I can use the rest of samples in X as test set while using positively predicted pairs of Y as features.
I will set this as an answer in case no one could reject this method.
If your processes in step 1 uses all data. then the features you are learning have information from the whole data set. Since you selected based on the whole dataset and THEN validation, you are leaking serious information.
You should probably stick with tools that are well known / already done for you before running out and trying weird strategies like this. Try using a model with L1 regularization to do feature selection for your, or start with some of the simpler searches like Sequential Backward Selection.
If you do cross validation correctly in the end, each training will perform its own independent feature selection. If you do one global feature selection and then do CV, you are going to be doing it wrong and probably leaking information.

Using weka to classify sensor data

I am working on a classification problem, which has different sensors. Each sensor collect a sets of numeric values.
I think its a classification problem and want to use weka as a ML tool for this problem. But I am not sure how to use weka to deal with the input values? And which classifier will best fit for this problem( one instance of a feature is a sets of numeric value)?
For example, I have three sensors A ,B, C. Can I define 5 collected data from all sensors,as one instance? Such as, One instance of A is {1,2,3,4,5,6,7}, and one instance of B is{3,434,534,213,55,4,7). C{424,24,24,13,24,5,6}.
Thanks a lot for your time on reviewing my question.
Commonly the first classifier to try is Naive Bayes (you can find it under "Bayes" directory in Weka) because it's fast, parameter less and the classification accuracy is hard to beat whenever the training sample is small.
Random Forest (you can find it under "Tree" directory in Weka) is another pleasant classifier since it process almost any data. Just run it and see whether it gives better results. It can be just necessary to increase the number of trees from the default 10 to some higher value. Since you have 7 attributes 100 trees should be enough.
Then I would try k-NN (you can find it under "Lazy" directory in Weka and it's called "IBk") because it commonly ranks amount the best single classifiers for a wide range of datasets. The only issues with k-nn are that it scales badly for large datasets (> 1GB) and it needs to fine tune k, the number of neighbors. This value is by default set to 1 but with increasing number of training samples it's commonly better to set it up to some higher integer value in range from 2 to 60.
And finally for some datasets where both, Naive Bayes and k-nn performs poorly, it's best to use SVM (under "Functions", it's called "Lib SVM"). However, it can be hassle to set up all the parameters of the SVM to get competitive results. Hence I leave it to the end when I already know what classification accuracies to expect. This classifier may not be the most convenient if you have more than two classes to classify.

Resources