Blurred (focussed) region could be arbitrary shape (not just rectangle)
Simple input/output example:
(is valid any algorithm, command, software, ...)
Thank you!
The variance is much higher in focused regions because blurring acts as a spatial low-pass filter.
But if the object shows no variance (uniform object like wall or a sky) you are completely lost and do not see any differences at all between the blurred and focused regions.
Therefore your question cannot be answered for every kind of image. It's impossible.
What I would do:
High pass filter your image. (Edge detection, absolute differences between neighboring pixels, Laplace or local variances, ...) (Matlab)
Smooth and apply threshold.
Apply pre-knowledge about imaging optics if existing. Example would be knowing that the focus must be round and in in the center, ...
Related
I do like to do compute the position and orientation of a camera in a civil aircraft cockpit.
I do use LEDs as fixed points. My plan is to save their X,Y,Z Position associated with the LED.
How can I detect and identify my LEDs on my images? Which feature descriptor and feature point extractor should I use?
How should I modify my image prior to feature detection?
I like to stay efficient.
----Please stop voting this question down----
Now after having found the solution to my problem, I do realize the question might have been too generic.
Anyways to support other people googeling I am going to describe my answer.
With combinations of OpenCVs functions I create masks which contain areas where the LEDs could be in white. The rest of the image is black. These functions are for example Core.range, Imgproc.dilate, and Imgproc.erode. Also with Imgproc.findcontours I am filtering out too large or too small contours. Also used to combine masks is Core.bitwise_and, or Core.bitwise_not.
The masks are computed from an image in the HSV color space as input.
Having these masks with potential LED areas, I do compute color histograms, which of the intensity normalized rgb colors. (Hue did not work well enough for me). These histograms are trained and normalized using a set of annotated input images and represent my descriptor.
I do match the trained descriptor against computed onces in the application using histogram intersection.
So I receive distance measures. Using a threshold for these measures, the measures and the knowledge of the geometric positions of the real-life LEDs I translate the patches to a graph system, which helps me to find the longest chain of potential LEDs.
Is there a robust way to detect the water line, like the edge of a river in this image, in OpenCV?
(source: pequannockriver.org)
This task is challenging because a combination of techniques must be used. Furthermore, for each technique, the numerical parameters may only work correctly for a very narrow range. This means either a human expert must tune them by trial-and-error for each image, or that the technique must be executed many times with many different parameters, in order for the correct result to be selected.
The following outline is highly-specific to this sample image. It might not work with any other images.
One bit of advice: As usual, any multi-step image analysis should always begin with the most reliable step, and then proceed down to the less reliable steps. Whenever possible, the less reliable step should make use of the result of more-reliable steps to augment its own accuracy.
Detection of sky
Convert image to HSV colorspace, and find the cyan located at the upper-half of the image.
Keep this HSV image, becuase it could be handy for the next few steps as well.
Detection of shrubs
Run Canny edge detection on the grayscale version of image, with suitably chosen sigma and thresholds. This will pick up the branches on the shrubs, which would look like a bunch of noise. Meanwhile, the water surface would be relatively smooth.
Grayscale is used in this technique in order to reduce the influence of reflections on the water surface (the green and yellow reflections from the shrubs). There might be other colorspaces (or preprocessing techniques) more capable of removing that reflection.
Detection of water ripples from a lower elevation angle viewpoint
Firstly, mark off any image parts that are already classified as shrubs or sky. Since shrub detection would be more reliable than water detection, shrub detection's result should be used to inform the less-reliable water detection.
Observation
Because of the low elevation angle viewpoint, the water ripples appear horizontally elongated. In fact, every image feature appears stretched horizontally. This is called Anisotropy. We could make use of this tendency to detect them.
Note: I am not experienced in anisotropy detection. Perhaps you can get better ideas from other people.
Idea 1:
Use maximally-stable extremal regions (MSER) as a blob detector.
The Wikipedia introduction appears intimidating, but it is really related to connected-component algorithms. A naive implementation can be done similar to Dijkstra's algorithm.
Idea 2:
Notice that the image features are horizontally stretched, a simpler approach is to just sum up the absolute values of horizontal gradients and compare that to the sum of absolute values of vertical gradients.
I had asked this on photo stackexchange but thought it might be relevant here as well, since I want to implement this programatically in my implementation.
I am trying to implement a blur detection algorithm for my imaging pipeline. The blur that I want to detect is both -
1) Camera Shake: Pictures captured using hand which moves/shakes when shutter speed is less.
2) Lens focussing errors - (Depth of Field) issues, like focussing on a incorrect object causing some blur.
3) Motion blur: Fast moving objects in the scene, captured using a not high enough shutter speed. E.g. A moving car a night might show a trail of its headlight/tail light in the image as a blur.
How can one detect this blur and quantify it in some way to make some decision based on that computed 'blur metric'?
What is the theory behind blur detection?
I am looking of good reading material using which I can implement some algorithm for this in C/Matlab.
thank you.
-AD.
Motion blur and camera shake are kind of the same thing when you think about the cause: relative motion of the camera and the object. You mention slow shutter speed -- it is a culprit in both cases.
Focus misses are subjective as they depend on the intent on the photographer. Without knowing what the photographer wanted to focus on, it's impossible to achieve this. And even if you do know what you wanted to focus on, it still wouldn't be trivial.
With that dose of realism aside, let me reassure you that blur detection is actually a very active research field, and there are already a few metrics that you can try out on your images. Here are some that I've used recently:
Edge width. Basically, perform edge detection on your image (using Canny or otherwise) and then measure the width of the edges. Blurry images will have wider edges that are more spread out. Sharper images will have thinner edges. Google for "A no-reference perceptual blur metric" by Marziliano -- it's a famous paper that describes this approach well enough for a full implementation. If you're dealing with motion blur, then the edges will be blurred (wide) in the direction of the motion.
Presence of fine detail. Have a look at my answer to this question (the edited part).
Frequency domain approaches. Taking the histogram of the DCT coefficients of the image (assuming you're working with JPEG) would give you an idea of how much fine detail the image has. This is how you grab the DCT coefficients from a JPEG file directly. If the count for the non-DC terms is low, it is likely that the image is blurry. This is the simplest way -- there are more sophisticated approaches in the frequency domain.
There are more, but I feel that that should be enough to get you started. If you require further info on either of those points, fire up Google Scholar and look around. In particular, check out the references of Marziliano's paper to get an idea about what has been tried in the past.
There is a great paper called : "analysis of focus measure operators for shape-from-focus" (https://www.researchgate.net/publication/234073157_Analysis_of_focus_measure_operators_in_shape-from-focus) , which does a comparison about 30 different techniques.
Out of all the different techniques, the "Laplacian" based methods seem to have the best performance. Most image processing programs like : MATLAB or OPENCV have already implemented this method . Below is an example using OpenCV : http://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
One important point to note here is that an image can have some blurry areas and some sharp areas. For example, if an image contains portrait photography, the image in the foreground is sharp whereas the background is blurry. In sports photography, the object in focus is sharp and the background usually has motion blur. One way to detect such a spatially varying blur in an image is to run a frequency domain analysis at every location in the image. One of the papers which addresses this topic is "Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes" (cvpr2017).
the authors look at multi resolution DCT coefficients at every pixel. These DCT coefficients are divided into low, medium, and high frequency bands, out of which only the high frequency coefficients are selected.
The DCT coefficients are then fused together and sorted to form the multiscale-fused and sorted high-frequency transform coefficients
A subset of these coefficients are selected. the number of selected coefficients is a tunable parameter which is application specific.
The selected subset of coefficients are then sent through a max pooling block to retain the highest activation within all the scales. This gives the blur map as the output, which is then sent through a post processing step to refine the map.
This blur map can be used to quantify the sharpness in various regions of the image. In order to get a single global metric to quantify the bluriness of the entire image, the mean of this blur map or the histogram of this blur map can be used
Here are some examples results on how the algorithm performs:
The sharp regions in the image have a high intensity in the blur_map, whereas blurry regions have a low intensity.
The github link to the project is: https://github.com/Utkarsh-Deshmukh/Spatially-Varying-Blur-Detection-python
The python implementation of this algorithm can be found on pypi which can easily be installed as shown below:
pip install blur_detector
A sample code snippet to generate the blur map is as follows:
import blur_detector
import cv2
if __name__ == '__main__':
img = cv2.imread('image_name', 0)
blur_map = blur_detector.detectBlur(img, downsampling_factor=4, num_scales=4, scale_start=2, num_iterations_RF_filter=3)
cv2.imshow('ori_img', img)
cv2.imshow('blur_map', blur_map)
cv2.waitKey(0)
For detecting blurry images, you can tweak the approach and add "Region of Interest estimation".
In this github link: https://github.com/Utkarsh-Deshmukh/Blurry-Image-Detector , I have used local entropy filters to estimate a region of interest. In this ROI, I then use DCT coefficients as feature extractors and train a simple multi-layer perceptron. On testing this approach on 20000 images in the "BSD-B" dataset (http://cg.postech.ac.kr/research/realblur/) I got an average accuracy of 94%
Just to add on the focussing errors, these may be detected by comparing the psf of the captured blurry images (wider) with reference ones (sharper). Deconvolution techniques may help correcting them but leaving artificial errors (shadows, rippling, ...). A light field camera can help refocusing to any depth planes since it captures the angular information besides the traditional spatial ones of the scene.
in my project I want to crop the ROI of an image. For this I create a map with the regions of interesst. Now I want to crop the area which has the most important pixels (black is not important, white is important).
Has someone an idea how to realize it? I think this is a maximazion problem
The red border in the image below is an example how I want to crop this image
If I understood your question correctly, you have computed a value at every point in the image. These values suggests the "importance"/"interestingness"/"saliency" of each point. The matrix/image containing these values is the "map" you are referring to. Your goal is to get the bounding box for regions of interests (ROI) with high "importance" score.
The way I think you can go about segmenting the ROIs is to apply Graph Cut based segmentation computing a "score" at each pixel using your importance map. The result of the segmentation is a binary mask that masks the "important" pixels. Next, run OpenCV's findcontours function on this binary mask to get the individual connected components. Then use OpenCV's boundingRect function on the contours returned by findContours(...) to get the bounding boxes.
The good thing about using a Graph Cut based segmentation algorithm in this way is that it will join up fragmented components i.e. the resulting binary mask will tend not to have pockets of small holes even if your "importance" map is noisy.
One Graph Cut based segmentation algorithm already implemented in OpenCV is the GrabCut algorithm. A quick hack would be to apply it on your "importance" map to get the binary mask I mentioned above. A more sophisticated approach would be to build the foreground and background (color perhaps?) model using your "importance" map and passing it as input to the function. More details on GrabCut in OpenCV can be found here: http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html?highlight=grabcut#void grabCut(InputArray img, InputOutputArray mask, Rect rect, InputOutputArray bgdModel, InputOutputArray fgdModel, int iterCount, int mode)
If you would like greater flexibility, you can hack your own graphcut based segmentation algorithm using the following MRF library. This library allows you to specify your custom objective function in computing the graph cut: http://vision.middlebury.edu/MRF/code/
To use the MRF library, you will need to specify the "cost" at each point in your image indicating whether that point is "foreground" or "background". You can also think of this dichotomy as "important" or "not important" instead of "foreground" vs "background".
The MRF library's goal is to return you a label at each point such that total cost of assigning those labels is as small as possible. Hence, the game is to come up with a function to compute a small cost for points you consider important and large otherwise.
Specifically, the cost at each point is composed of 2 parts: 1) The data term/function and 2) The smoothness term/function. As mentioned earlier, the smaller the data term at each point, the more likely that point will be selected. If your "importance" score s_ij is in the range [0, 1], then a common way to compute your data term would be -log(s_ij).
The smoothness terms is a way to suggest whether 2 neighboring pixels p, q, should have the same label i.e. both "foreground", "background", or one "foreground" and the other "background". Similar to the data cost, you have to construct it such that the cost is small for neighbor pixels having similar "importance" score so that they will be assigned the same label. This term is responsible for "smoothing" the resulting mask so that you will not have pixels of low "importance" sprinkled within regions of high "importance" and vice versa. If there are such regions, OpenCV's findContours(...) function mentioned above will return contours for these regions, which can be filtered out perhaps by checking their size.
Details on functions to compute the cost can be found in the GrabCut paper: GrabCut
This blog post provides a bit more detail (and code) on creating your own graphcut segmentation algorithm in OpenCV: http://www.morethantechnical.com/2010/05/05/bust-out-your-own-graphcut-based-image-segmentation-with-opencv-w-code/
Another paper showing how to perform graph cut segmentation on grayscale images (your case), with better notations, and without the complicated image matting part (not implemented in OpenCV's version) in the GrabCut paper is this: Graph Cuts and Efficient N-D Image Segmentation
Hope this helps.
I had asked this on photo stackexchange but thought it might be relevant here as well, since I want to implement this programatically in my implementation.
I am trying to implement a blur detection algorithm for my imaging pipeline. The blur that I want to detect is both -
1) Camera Shake: Pictures captured using hand which moves/shakes when shutter speed is less.
2) Lens focussing errors - (Depth of Field) issues, like focussing on a incorrect object causing some blur.
3) Motion blur: Fast moving objects in the scene, captured using a not high enough shutter speed. E.g. A moving car a night might show a trail of its headlight/tail light in the image as a blur.
How can one detect this blur and quantify it in some way to make some decision based on that computed 'blur metric'?
What is the theory behind blur detection?
I am looking of good reading material using which I can implement some algorithm for this in C/Matlab.
thank you.
-AD.
Motion blur and camera shake are kind of the same thing when you think about the cause: relative motion of the camera and the object. You mention slow shutter speed -- it is a culprit in both cases.
Focus misses are subjective as they depend on the intent on the photographer. Without knowing what the photographer wanted to focus on, it's impossible to achieve this. And even if you do know what you wanted to focus on, it still wouldn't be trivial.
With that dose of realism aside, let me reassure you that blur detection is actually a very active research field, and there are already a few metrics that you can try out on your images. Here are some that I've used recently:
Edge width. Basically, perform edge detection on your image (using Canny or otherwise) and then measure the width of the edges. Blurry images will have wider edges that are more spread out. Sharper images will have thinner edges. Google for "A no-reference perceptual blur metric" by Marziliano -- it's a famous paper that describes this approach well enough for a full implementation. If you're dealing with motion blur, then the edges will be blurred (wide) in the direction of the motion.
Presence of fine detail. Have a look at my answer to this question (the edited part).
Frequency domain approaches. Taking the histogram of the DCT coefficients of the image (assuming you're working with JPEG) would give you an idea of how much fine detail the image has. This is how you grab the DCT coefficients from a JPEG file directly. If the count for the non-DC terms is low, it is likely that the image is blurry. This is the simplest way -- there are more sophisticated approaches in the frequency domain.
There are more, but I feel that that should be enough to get you started. If you require further info on either of those points, fire up Google Scholar and look around. In particular, check out the references of Marziliano's paper to get an idea about what has been tried in the past.
There is a great paper called : "analysis of focus measure operators for shape-from-focus" (https://www.researchgate.net/publication/234073157_Analysis_of_focus_measure_operators_in_shape-from-focus) , which does a comparison about 30 different techniques.
Out of all the different techniques, the "Laplacian" based methods seem to have the best performance. Most image processing programs like : MATLAB or OPENCV have already implemented this method . Below is an example using OpenCV : http://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
One important point to note here is that an image can have some blurry areas and some sharp areas. For example, if an image contains portrait photography, the image in the foreground is sharp whereas the background is blurry. In sports photography, the object in focus is sharp and the background usually has motion blur. One way to detect such a spatially varying blur in an image is to run a frequency domain analysis at every location in the image. One of the papers which addresses this topic is "Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes" (cvpr2017).
the authors look at multi resolution DCT coefficients at every pixel. These DCT coefficients are divided into low, medium, and high frequency bands, out of which only the high frequency coefficients are selected.
The DCT coefficients are then fused together and sorted to form the multiscale-fused and sorted high-frequency transform coefficients
A subset of these coefficients are selected. the number of selected coefficients is a tunable parameter which is application specific.
The selected subset of coefficients are then sent through a max pooling block to retain the highest activation within all the scales. This gives the blur map as the output, which is then sent through a post processing step to refine the map.
This blur map can be used to quantify the sharpness in various regions of the image. In order to get a single global metric to quantify the bluriness of the entire image, the mean of this blur map or the histogram of this blur map can be used
Here are some examples results on how the algorithm performs:
The sharp regions in the image have a high intensity in the blur_map, whereas blurry regions have a low intensity.
The github link to the project is: https://github.com/Utkarsh-Deshmukh/Spatially-Varying-Blur-Detection-python
The python implementation of this algorithm can be found on pypi which can easily be installed as shown below:
pip install blur_detector
A sample code snippet to generate the blur map is as follows:
import blur_detector
import cv2
if __name__ == '__main__':
img = cv2.imread('image_name', 0)
blur_map = blur_detector.detectBlur(img, downsampling_factor=4, num_scales=4, scale_start=2, num_iterations_RF_filter=3)
cv2.imshow('ori_img', img)
cv2.imshow('blur_map', blur_map)
cv2.waitKey(0)
For detecting blurry images, you can tweak the approach and add "Region of Interest estimation".
In this github link: https://github.com/Utkarsh-Deshmukh/Blurry-Image-Detector , I have used local entropy filters to estimate a region of interest. In this ROI, I then use DCT coefficients as feature extractors and train a simple multi-layer perceptron. On testing this approach on 20000 images in the "BSD-B" dataset (http://cg.postech.ac.kr/research/realblur/) I got an average accuracy of 94%
Just to add on the focussing errors, these may be detected by comparing the psf of the captured blurry images (wider) with reference ones (sharper). Deconvolution techniques may help correcting them but leaving artificial errors (shadows, rippling, ...). A light field camera can help refocusing to any depth planes since it captures the angular information besides the traditional spatial ones of the scene.