Use Rtti to set method field - delphi

I'm using Delphi XE to write a base class, which will allow descending classes to have dll methods mapped by applying an annotation. However I get a typecasting error, which is understandable.
In essence the base class should look like this:
TWrapperBase = class
public
FLibHandle: THandle;
procedure MapMethods;
end;
procedure TWrapperBase.MapMethods;
var
MyField: TRttiField;
MyAttribute: TCustomAttribute;
pMethod: pointer;
begin
FLibHandle := LoadLibrary(PWideChar(aMCLMCR_dll));
for MyField in TRttiContext.Create.GetType(ClassType).GetFields do
for MyAttribute in MyField.GetAttributes do
if MyAttribute.InheritsFrom(TMyMapperAttribute) then
begin
pMethod := GetProcAddress(FLibHandle, (MyAttribute as TMyMapperAttribute).TargetMethod);
if Assigned(pMethod) then
MyField.SetValue(Self, pMethod); // I get a Typecast error here
end;
And a descending class could look like this:
TDecendant = class(TWrapperBase)
private type
TSomeDLLMethod = procedure(aParam: TSomeType); cdecl;
private
[TMyMapperAttribute('MyDllMethodName')]
FSomeDLLMethod: TSomeDLLMethod;
public
property SomeDLLMethod: TSomeDLLMethod read FSomeDLLMethod;
end;
I could implement this differently, by hard coding the linking for each method in an overriden 'MapMethods'. This would however require each descendant to do so which I'd like to avoid.
I know that the TValue as used in this case will contain a pointer and not of the correct type (procedure(aParam: TSomeType); cdecl; in this case).
My question: Is there a way to pass the pointer from 'GetProcAdress' as the correct type, or to set the field directly (for example by using the field address 'PByte(Self)+MyField.Offset', which you can use to set the value of a record property)?
With the old Rtti, this could be done but only for published properties and without any type checking:
if IsPublishedProp(Self, 'SomeDLLMethod') then
SetMethodProp(Self, 'SomeDLLMethod', GetProcAddress(FLibHandle, 'MethodName');

There are two problems:
First your EInvalidCast is caused by TValue being very strict about type conversions. You are passing in a Pointer and want to set a field of type TSomeDLLMethod. You need to explicitly pass a TValue that has the correct type info.
if Assigned(pMethod) then
begin
TValue.Make(#pMethod, MyField.FieldType.Handle, value);
MyField.SetValue(Self, value);
end;
Now you will run into another EInvalidCast exception which is triggered because of a bug in XE inside the GetInlineSize method of the Rtti.pas which returns 0 for a tkProcedure kind of type. I don't know in what version this got fixed but it does not exist anymore in XE5.
For XE this can be fixed by using a unit I wrote some while ago (and which I just updated to fix this bug): RttiPatch.pas.
I also reported the original issue because Pointer is assignment compatible to a procedure type so TValue should also handle this: http://qc.embarcadero.com/wc/qcmain.aspx?d=124010

You could try something like:
Move(pMethod, PByte(Self) + Field.Offset, SizeOf(Pointer));
or
PPointer(PByte(Self) + Field.Offset)^ := pMethod;

Related

Generic function with interface constraint [duplicate]

I just tried my first use of generics in Delphi 2009 and am perplexed on how to use a generic type as the input to the Supports function used to see if an object implements a given interface. I've created a small sample illustrating the problem.
Given the following types and utility function:
IMyInterface = interface
['{60F37191-5B95-45BC-8C14-76633826889E}']
end;
TMyObject = class(TInterfacedObject, IMyInterface)
end;
class function TFunctions.GetInterface<T>(myObject: TObject): T;
var
specificInterface: T;
begin
// This would compile, but looses the generic capability
//Supports(myObject, IMyInterface, specificInterface);
// This results in compile errors
Supports(myObject, T, specificInterface);
result := specificInterface;
end;
and the following code snippet:
class procedure TFunctions.Test;
var
myObject: TMyObject;
myInterface: IMyInterface;
begin
myObject := TMyObject.Create;
myInterface := GetInterface<IMyInterface>(myObject);
end;
I would expect no problems but I get the following compile time errors:
[DCC Error] GenericExample.pas(37): E2029 '(' expected but ',' found
[DCC Error] GenericExample.pas(37): E2014 Statement expected, but expression of type 'T' found
I'm not sure what the compiler is expecting me to do with the T when used as the actual argument to the function.
I've searched around quite a bit and haven't been able to crack this one. A part of me suspects that if I could understand how an interface name gets converted to the IID: TGUID type during compilation, when using a concrete interface name, I could make some headway, but that has evaded me also.
Any help is much appreciated.
There is no guarantee that T has a GUID associated with it, and there is no means in the language to write a constraint on the type parameter to make that guarantee.
The interface name is converted into a GUID by the compiler looking up the name in the symbol table, getting the compiler's data structure representing the interface, and checking the corresponding field for the GUID. But generics are not like C++ templates; they need to be compiled and type-checked and known to work for any valid type parameter, and that means constraining the type parameter in its declaration.
You can get the GUID using RTTI (first checking that T does indeed represent an interface) with something like GetTypeData(TypeInfo(T))^.Guid and pass the GUID to Supports that way.
Why are you even bothering?
To use this TFunctions.GetInterface you need:
an interface
an object reference
If you have those, then you can just call Supports() directly:
intf := TFunctions.GetInterface<IMyInterface>(myObject);
is exactly equivalent to:
Supports(IMyInterface, myObject, intf);
Using generics here is a waste of time and effort and really begs the question "Why Do It?".
It is just making things harder to read (as is so often the case with generics) and is more cumbersome to use.
Supports() returns a convenient boolean to indicate success/failure, which you have to test for separately using your wrapper:
intf := TFunctions.GetInterface<IMyInterface>(myObject);
if Assigned(intf) then
// ...
versus:
if Supports(IMyInterface, myObject, intf) then
// We can use intf
When creating wrappers around functionality it is generally the case that the result is an improvement in readabilty or usability.
imho this fails on both counts and you should just stick with the Supports() function itself.

Delphi OpenTools API get component property

I'm implementing a package to convert and auto-generate components in the delphi IDE. I'm aware that GExperts has a similar function but I need to customize some specific properties.
Right now I'm stuck on accessing the TADOQuery.SQL property, which is an instance of TStrings:
var
aVal : TValue;
aSqlS : TStrings;
begin
[...]
if (mycomp.GetComponentType = 'TADOQuery') then
if mycomp.GetPropValueByName('SQL', aVal) then
begin
aSqlS := TStrings(aVal.AsClass);
if Assigned(aSqlS) then <----- problem is here
ShowMessage(aSqlS.Text); <----- problem is here
end;
end;
I'm not really sure whether using TValue from RTTI is the correct way to go.
Thanks
Assuming GetPropValueByName() is returning a valid TValue (you did not show that code), then using aVal.AsClass is wrong since the SQL property getter does not return a metaclass type. It returns an object pointer, so use aVal.AsObject instead, or even aVal.AsType<TStrings>.
Update If comp is actually IOTAComponent than TValue is definitely wrong to use at all. The output of IOTAComponent.GetPropValueByName() is an untyped var that receives the raw data of the property value, or an IOTAComponent for TPersistent-derived objects:
var
aVal: IOTAComponent;
aSqlS : TStrings;
begin
[...]
if (mycomp.GetComponentType = 'TADOQuery') then
if mycomp.PropValueByName('SQL', aVal) then
ShowMessage(TStrings(aVal.GetComponentHandle).Text);
end;
However, a better option would be to access the actual TADOQuery object instead:
if (mycomp.GetComponentType = 'TADOQuery') then
ShowMessage(TADOQuery(comp.GetComponentHandle).SQL.Text);

Delphi interfaces and IList<T> (or TObjectList<T>)

I'm trying to implement Spring 4 Delphi and only program to interfaces instead of classes. However this seems impossible when you want to use a TObjectList.
Consider the following code:
unit Unit1;
interface
uses
Spring.Collections,
Spring.Collections.Lists;
type
IMyObjParent = interface
['{E063AD44-B7F1-443C-B9FE-AEB7395B39DE}']
procedure ParentDoSomething;
end;
IMyObjChild = interface(IMyObjParent)
['{E063AD44-B7F1-443C-B9FE-AEB7395B39DE}']
procedure ChildDoSomething;
end;
implementation
type
TMyObjChild = class(TInterfacedObject, IMyObjChild)
protected
procedure ParentDoSomething;
public
procedure ChildDoSomething;
end;
{ TMyObj }
procedure TMyObjChild.ChildDoSomething;
begin
end;
procedure TMyObjChild.ParentDoSomething;
begin
end;
procedure TestIt;
var
LMyList: IList<IMyObjChild>;
begin
TCollections.CreateObjectList<IMyObjChild>;
//[DCC Error] Unit1.pas(53): E2511 Type parameter 'T' must be a class type
end;
end.
I know I can change IMyObjChild to TMyObjChild in the example above, but if I need that in another unit or a form then how do I do this?
Trying to program only to interfaces seems too hard or impossible as soon as you need a TObjectList.
Grrr... Any ideas or help?
CreateObjectList has a generic constraint that its type parameter is a class:
function CreateObjectList<T: class>(...): IList<T>;
Your type parameter does not meet that constraint since it is an interface. The thing about an object list is that it holds objects. If you take a look at TObjectList in Spring.Collections.Lists you'll see that it also has the generic constraint that its type parameter is a class. And since CreateObjectList is going to create a TObjectList<T>, it must reflect the type constraint.
The raison d'ĂȘtre of TObjectList<T> is to assume ownership of its members through the OwnsObjects. Much in the same way as do the classic Delphi RTL classes of the same name. Of course you are holding interfaces and so you simply do not need this functionality. You should call CreateList instead. A plain TList<T> is what you need, even if you refer to it through the IList<T> interface.
LMyList := TCollections.CreateList<IMyObjChild>;

TGenericClass<T> containing a TObjectList<T> doesn't compile

I'm trying to write a generic class which contains a generic TObjectList< T > which should contain only Elements of TItem.
uses
Generics.Collections;
type
TItem = class
end;
TGenericClass<T: TItem> = class
public
SimpleList: TList<T>; // This compiles
ObjectList: TObjectList<T>; // This doesn't compile: Compiler complaints that "T is not a class type"
end;
Is this a wrong syntax? BTW: TGenericClass< T: class> compiles, but then the Items in the List are not TItem anymore which is what I don't want.
This is a known bug with the D2009 compiler. It will most likely be fixed soon, either in an update or hotfix for 2009, or in Delphi 2010 (Weaver) once it gets released. Until then, you need some sort of workaround, unfortunately. :(
Generic types can have several constraints:
A class name, the generic type must be of that class of a descendant of the class.
An interface name, the generic type must implement that interface.
'class', the generic type must be a class (this can't be combined with a classname).
'record', the generic type must be a record.
'constructor', a bit vague, but you can create instances of the generic class type.
If you create a generic that uses other generics, you need to copy the constraints, else it won't work. In your case, TObjectList has the class constraint. This means, your T needs that constraint too.
Unfortunately this can't be combined with the named class constraint.
So I advice you to use an interface, these can be combined:
type
IItem = interface end;
TItem = class (TInterfacedObject, IItem) end;
TGenericClass<T: class, IItem> = class
private
FSimpleList: TList<T>;
FObjectList: TObjectList<T>;
end;
Besides, you should make your fields private else anyone can change them.
I like GameCat's answer (gave it +1) for the description of class constraints.
I have a slight modification of your code that works. Note that since you gave a constraint to say that T must be a descendant of TItem, you can actually just declare ObjectList as TObjectList<TItem> - no need to use T here.
Alternatively, you could create a proxy of sorts. First, note GameCat's comment about fields being private.
type
TGenericClass<T: TItem> = class
private
type
D = class(TItem); // Proxy to get your T into and object list
private
SimpleList: TList<T>;
ObjectList: TObjectList<D>; // Compiles now, but there is that type issue
public
procedure Add(Item: T); // No direct access to ObjectList
end;
Add is an example of how to access the object list. As it turns out, you can pass Item to ObjectList.Add with no trouble whatsoever:
procedure TGenericClass<T>.Add(Item: T);
begin
ObjectList.Add(Item);
end;
I think that may be a bug though, so to protect yourself against that getting fixed:
procedure TGenericClass<T>.Add(Item: T);
var
Obj: TObject;
begin
Obj := Item;
ObjectList.Add(D(Obj));
end;
Given your scenario though, I'd say TObjectList should do just fine.

How to know what type is a var?

TypeInfo(Type) returns the info about the specified type, is there any way to know the typeinfo of a var?
var
S: string;
Instance: IObjectType;
Obj: TDBGrid;
Info: PTypeInfo;
begin
Info:= TypeInfo(S);
Info:= TypeInfo(Instance);
Info:= TypeInfo(Obj);
end
This code returns:
[DCC Error] Unit1.pas(354): E2133 TYPEINFO standard function expects a type identifier
I know a non instantiated var is only a pointer address.
At compile time, the compiler parses and do the type safety check.
At run time, is there any way to know a little more about a var, only passing its address?
No.
First, there's no such thing as a "non-instantiated variable." You instantiate it by the mere act of typing its name and type into your source file.
Second, you already know all there is to know about a variable by looking at it in your source code. The variable ceases to exist once your program is compiled. After that, it's all just bits.
A pointer only has a type at compile time. At run time, everything that can be done to that address has already been determined. The compiler checks for that, as you already noted. Checking the type of a variable at run time is only useful in languages where a variable's type could change, as in dynamic languages. The closest Delphi comes to that is with its Variant type. The type of the variable is always Variant, but you can store many types of values in it. To find out what it holds, you can use the VarType function.
Any time you could want to use TypeInfo to get the type information of the type associated with a variable, you can also directly name the type you're interested in; if the variable is in scope, then you can go find its declaration and use the declared type in your call to TypeInfo.
If you want to pass an arbitrary address to a function and have that function discover the type information for itself, you're out of luck. You will instead need to pass the PTypeInfo value as an additional parameter. That's what all the built-in Delphi functions do. For example, when you call New on a pointer variable, the compiler inserts an additional parameter that holds the PTypeInfo value for the type you're allocating. When you call SetLength on a dynamic array, the compiler inserts a PTypeInfo value for the array type.
The answer that you gave suggests that you're looking for something other than what you asked for. Given your question, I thought you were looking for a hypothetical function that could satisfy this code:
var
S: string;
Instance: IObjectType;
Obj: TDBGrid;
Info: PTypeInfo;
begin
Info:= GetVariableTypeInfo(#S);
Assert(Info = TypeInfo(string));
Info:= GetVariableTypeInfo(#Instance);
Assert(Info = TypeInfo(IObjectType));
Info:= GetVariableTypeInfo(#Obj);
Assert(Info = TypeInfo(TDBGrid));
end;
Let's use the IsClass and IsObject functions from the JCL to build that function:
function GetVariableTypeInfo(pvar: Pointer): PTypeInfo;
begin
if not Assigned(pvar) then
Result := nil
else if IsClass(PPointer(pvar)^) then
Result := PClass(pvar).ClassInfo
else if IsObject(PPointer(pvar)^) then
Result := PObject(pvar).ClassInfo
else
raise EUnknownResult.Create;
end;
It obviously won't work for S or Instance above, but let's see what happens with Obj:
Info := GetVariableTypeInfo(#Obj);
That should give an access violation. Obj has no value, so IsClass and IsObject both will be reading an unspecified memory address, probably not one that belongs to your process. You asked for a routine that would use a variable's address as its input, but the mere address isn't enough.
Now let's take a closer look at how IsClass and IsObject really behave. Those functions take an arbitrary value and check whether the value looks like it might be a value of the given kind, either object (instance) or class. Use it like this:
// This code will yield no assertion failures.
var
p: Pointer;
o: TObject;
a: array of Integer;
begin
p := TDBGrid;
Assert(IsClass(p));
p := TForm.Create(nil);
Assert(IsObject(p));
// So far, so good. Works just as expected.
// Now things get interesting:
Pointer(a) := p;
Assert(IsObject(a));
Pointer(a) := nil;
// A dynamic array is an object? Hmm.
o := nil;
try
IsObject(o);
Assert(False);
except
on e: TObject do
Assert(e is EAccessViolation);
end;
// The variable is clearly a TObject, but since it
// doesn't hold a reference to an object, IsObject
// can't check whether its class field looks like
// a valid class reference.
end;
Notice that the functions tell you nothing about the variables, only about the values they hold. I wouldn't really consider those functions, then, to answer the question of how to get type information about a variable.
Furthermore, you said that all you know about the variable is its address. The functions you found do not take the address of a variable. They take the value of a variable. Here's a demonstration:
var
c: TClass;
begin
c := TDBGrid;
Assert(IsClass(c));
Assert(not IsClass(#c)); // Address of variable
Assert(IsObject(#c)); // Address of variable is an object?
end;
You might object to how I'm abusing these functions by passing what's obviously garbage into them. But I think that's the only way it makes sense to talk about this topic. If you know you'll never have garbage values, then you don't need the function you're asking for anyway because you already know enough about your program to use real types for your variables.
Overall, you're asking the wrong question. Instead of asking how you determine the type of a variable or the type of a value in memory, you should be asking how you got yourself into the position where you don't already know the types of your variables and your data.
With generics, it is now possible to get the type info without specifying it.
Certain users indicated the following code doesn't compile without errors.
As of Delphi 10 Seattle, version 23.0.20618.2753, it compiles without errors, as seen below in the screenshot.
program TypeInfos;
{$APPTYPE CONSOLE}
{$R *.res}
uses
System.SysUtils, System.TypInfo;
type
TTypeInfo = class
class procedure ShowTypeInfo<T>(const X: T);
end;
{ TTypeInfo }
class procedure TTypeInfo.ShowTypeInfo<T>(const X: T);
var
LTypeInfo: PTypeInfo;
begin
LTypeInfo := TypeInfo(T);
WriteLn(LTypeInfo.Name);
end;
var
L: Exception;
B: Boolean;
begin
// Console output
TTypeInfo.ShowTypeInfo(L); // Exception
TTypeInfo.ShowTypeInfo(B); // Boolean
end.
Not that I know of. You can get RTTI (Run Time Type Information) on published properties of a class, but not for "normal" variables like strings and integers and so forth. The information is simply not there.
Besides, the only way you could pass a var without passing a type is to use either a generic TObject parameter, a generic type (D2008, as in ), or as an untyped parameter. I can't think of another way of passing it that would even compile.

Resources