How can I distinguish between Xtext, Xtend and similar Eclipse technologies? - xtext

What are the characteristics, differences and similarities of all these Eclipse-based technologies starting with X (Xtext, Xtend)? Are there any more to learn about?

Xtext is a textual modelling framework for development of programming languages and domain specific languages.
Xtend is a JVM language that "extends" Java, being fully interoperable with it while having a much nicer syntax. It is to Java like CoffeeScript is to JavaScript.
Xbase is a partial programming language implemented in Xtext and is meant to be embedded and extended within other programming languages and domain-specific languages (DSL) written in Xtext. Xtend is also based upon it.
Xcore is a convenient textual syntax for Ecore metamodels.
(Xpand is a language specialized on code generation based on EMF models, now deprecated in favor of Xtend.)
(Xpect is a unit- and integration-testing framework that stores test data in any kind of text files and is based on JUnit. It is implemented in Xtext and is a 3rd party project.)

Related

.NET Language for cleanest implementation of ISO 8583 parser

What would be the best .NET language for a new ISO 8583 parser, if we're talking about dev time and comprehensibility (not so much about performance)?
I'm currently mostly involved with C#, but have also worked with VB.Net, and have introductory level knowledge of functional programming (so F# is not completely out of the question).
If domain of problem is parsing finite depth textual data structures with bitmaps of fields, I'm asking which language is the best fit? (if your suggestion is Javascript or Perl I'll take a note of that too).

Can Xtext be used for parsing general purpose programming languages?

I'm currently developing a general-purpose agent-based programming language (its syntaxt will be somewhat inspired by Java, and we are also using object in this language).
Since the beginning of the project we were doubtful about the fact of using ANTLR or Xtext. At that time we found out that Xtext was implementing a subset of the feature of ANTLR. So we decided to use ANLTR for our language losing the possibility to have a full-fledged Eclipse editor for free for our language (such a nice features provided by Xtext).
However, as the best of my knowledge, this summer the Xtext project has done a big step forward. Quoting from the link:
What are the limitations of Xtext?
Sven: You can implement almost any kind of programming language or DSL
with Xtext. There is one exception, that is if you need to use so
called 'Semantic Predicates' which is a rather complicated thing I
don't think is worth being explained here. Very few languages really
need this concept. However the prominent example is C/C++. We want to
look into that topic for the next release.
And that is also reinforced in the Xtext documentation:
What is Xtext? No matter if you want to create a small textual domain-specific language (DSL) or you want to implement a full-blown
general purpose programming language. With Xtext you can create your
very own languages in a snap. Also if you already have an existing
language but it lacks decent tool support, you can use Xtext to create
a sophisticated Eclipse-based development environment providing
editing experience known from modern Java IDEs in a surprisingly short
amount of time. We call Xtext a language development framework.
If Xtext has got rid of its past limitations why is it still not possible to find a complex Xtext grammar for the best known programming languages (Java, C#, etc.)?
On the ANTLR website you can find tons of such grammar examples, for what concerns Xtext instead the only sample I was able to find is the one reported in the documentation. So maybe Xtext is still not mature to be used for implementing a general purpose programming language? I'm a bit worried about this... I would not start to re-write the grammar in Xtext for then to recognize that it was not suited for that.
I think nobody implemented Java or C++ because it is a lot of work (even with Xtext) and the existing tools and compilers are excellent.
However, you could have a look at Xbase and Xtend, which is the expression language we ship with Xtext. It is built with Xtext and is quite a good proof for what you can build with Xtext. We have done that in about 4 person months.
I did a couple of screencasts on Xtend:
http://blog.efftinge.de/2011/03/xtend-screencast-part-1-basics.html
http://blog.efftinge.de/2011/03/xtend-screencast-part-2-switch.html
http://blog.efftinge.de/2011/03/xtend-screencast-part-3-rich-strings-ie.html
Note, that you can simply embed Xbase expressions into your language.
I can't speak for what Xtext is or does well.
I can speak to the problem of developing robust tools for processing real languages, based on our experience with the DMS Software Reengineering Toolkit, which we imagine is a language manipulation framework.
First, parsing of real languages usually involves something messy in lexing and/or parsing, due to the historical ways these languages have evolved. Java is pretty clean. C# has context-dependent keywords and a rudimentary preprocessor sort of like C's. C has a full blown preprocessor. C++ is famously "hard to parse" due to ambiguities in the grammar and shenanigans with template syntax. COBOL is fairly ugly, doesn't have any reference grammars, and comes in a variety of dialects. PHP will turn you to stone if you look at it because it is so poorly defined. (DMS has parsers for all of these, used in anger on real applications).
Yet you can parse all of these with most of the available parsing technologies if you try hard enough, usually by abusing the lexer or the parser to achieve your goals (how the GNU guys abused Bison to parse C++ by tangling lexical analysis with symbol table lookup is a nice ugly case in point). But it takes a lot of effort to get the language details right, and the reference manuals are only close approximations of the truth with respect to what the compilers really accept.
If Xtext has a decent parsing engine, one can likely do this with Xtext. A brief perusal of the Xtext site sounds like the lexers and parsers are fairly decent. I didn't see anything about the "Semantic Predicate"s; we have them in DMS and they are lifesavers in some of the really dark corners of parsing. Even using the really good parsing technology (we use GLR parsers), it would be very hard to parse COBOL data declarations (extracting their nesting structure during the parse) without them.
You have an interesting problem in that your language isn't well defined yet. That will make your initial parsers somewhat messy, and you'll revise them a lot. Here's where strong parsing technology helps you: if you can revise your grammar easily you can focus on what you want your language to look like, rather than focusing on fighting the lexer and parser. The fact that you can change your language definition means in fact that if Xtext has some limitations, you can probably bend your language syntax to match without huge amounts of pain. ANTLR does have the proven ability to parse a language pretty much as you imagine it, modulo the usual amount of parser hacking.
What is never discussed is what else is needed to process a language for real. The first thing you need to be able to do is to construct ASTs, which ANTLR and YACC will help you do; I presume Xtext does also. You also need symbol tables, control and data flow analysis (both local and global), and machinery to transform your language into something else (presumably more executable). Doing just symbol tables you will find surprisingly hard; C++ has several hundred pages of "how to look up an identifier"; Java generics are a lot tougher to get right than you might expect. You might also want to prettyprint the AST back to source code, if you want to offer refactorings. (EDIT: Here both ANTLR and Xtext offer what amounts to text-template driven code generation).
Yet these are complex mechanisms that take as much time, if not more than building the parser. The reason DMS exists isn't because it can parse (we view this just as the ante in a poker game), but because all of this other stuff is very hard and we wanted to amortize the cost of doing it all (DMS has, we think, excellent support for all of these mechanisms but YMMV).
On reading the Xtext overview, it sounds like they have some support for symbol tables but it is unclear what kind of assumption is behind it (e.g., for C++ you have to support multiple inheritance and namespaces).
If you are already started down the ANTLR road and have something running, I'd be tempted to stay the course; I doubt if Xtext will offer you a lot of additional help. If you really really want Xtext's editor, then you can probably switch at the price of restructuring what grammar you have (this is a pretty typical price to pay when changing parsing paradigms). Expect most of your work to appear after you get the parser right, in an ad hoc way. I doubt you will find Xtext or ANTLR much different here.
I guess the most simple answer to your question is: Many general purpose languages can be implemented using Xtext. But since there is no general answer to which parser-capabilities a general purpose languages needs, there is no general answer to your questions.
However, I've got a few pointers:
With Xtext 2.0 (released this summer), Xtext supports syntactic predicates. This is one of the most requested features to handle ambiguous syntax without enabling antlr's backtracking.
You might want to look at the brand-new languages Xbase and Xtend, which are (judging based on their capabilities) general-purpose and which are developed using Xtext. Sven has some nice screen casts in his blog: http://blog.efftinge.de/
Regarding your question why we don't see Xtext-grammars for Java, C++, etc.:
With Xtext, a language is more than just a grammar, so just having a grammar that describes a language's syntax is a good starting point but usually not an artifact valuable enough for shipping. The reason is that with an Xtext-grammar you also define the AST's structure (Abstract Syntax Tree, and an Ecore Model in fact) including true cross references. Since this model is the main internal API of your language people usually spend a lot of thought designing it. Furthermore, to resolve cross references (aka linking) you need to implement scoping (as it is called in Xtext). Without a proper implementation of scoping you can either not have true cross references in your model or you'll get many lining errors.
A guess my point is that creating a grammar + designing the AST model + implementing scoping is just a little more effort that taking a grammar from some language-zoo and translating it to Xtext's syntax.

Is Lua an object-oriented language?

Is this language an OO language?
Is it often used as OO language?
Lua is fully capable of prototype-based object-oriented programming similar to JavaScript.
Prototype-based programming is a style
of object-oriented programming in
which classes are not present, and
behavior reuse (known as inheritance
in class-based languages) is performed
via a process of cloning existing
objects that serve as prototypes. This
model can also be known as class-less,
prototype-oriented or instance-based
programming. Delegation is the
language feature that supports
prototype-based programming.
For more information, see Chapter 16 - Object-Oriented Programming of the Programming in Lua book.
It does support object oriented programming with some difficulty. This chapter in the official guide explains http://www.lua.org/pil/16.html
Lua it's not an OO language "per-se" but offers mechanisms to implement different styles of Object Orientation.
There are a lot of libraries that implement OO for lua. A look at lua.org (the main Lua site) or lua-users (the Lua Community Wiki) will be helpful.
Even more helpful would be to ask in the Lua Mailing list.
Lua is a powerful, fast, lightweight,
embeddable scripting language.
Lua combines simple procedural syntax
with powerful data description
constructs based on associative arrays
and extensible semantics. Lua is
dynamically typed, runs by
interpreting bytecode for a
register-based virtual machine, and
has automatic memory management with
incremental garbage collection, making
it ideal for configuration, scripting,
and rapid prototyping.
~ Lua: about
It's mostly used as a scripting tool in Apps, to extend or implement functionalities.

Language parsers

I need to parse C#, Ruby and Python source code to generate some reports. I need to get a list of method names inside a class, and I need some other info such as usage of global variable or something. Just parsing using RE could be a solution, but I expect a better (systematic) solution using parsers, if it is easily possible.
What parsers for those languages are provided?
For C#, I found http://csparser.codeplex.com/Wikipage , but for the others, I found a bunch of parsers using those languages, but not the language parsers of them.
It may be worth looking into the ANTLR parser generator.
You'll find, on the ANTLR site, grammars for all 3 languages you are interested in (Although the Ruby grammar is only for a "simplified" version of the language).
The next difficulty may be to adapt these grammars for the particular target language you would like, i.e. the language in which the parsers themselves will be generated. ANTLR's grammar language is very expressive, allowing one to deal with various context-sensitive languages. This is done by inserting various snippets (in the target language) and/or semantic or syntactic predicates (also in the target language) amid the EBNF-like grammar; consequently the grammar is a bit messier and may need adapting when the target language is changed. The "native" target language of ANTLR is Java, but many other targets languages are supported.
On the whole, ANTLR represents a bit a setup/learning-curve effort, but since you need to deal with 3 languages, it may well be worth the investment, as this will allow you to have a uniform framework (over which you have "full" control), rather than trying to corral three possibly very distinct, and possibly more "locked down" parsers as you started doing.
All three languages are relatively sophisticated languages and although your goal is "merely" to identify methods within programs, you may be able to hack/simplify some of the grammars (or maybe simply "ignore" parts of them), only mapping the few parser-level rules of interest to your eventual goal.
Once these rules are identified, you can apply the same or similar actions, i.e. snippets (in the target language) which implement what you wish to accomplish when the parser encounters such rules (eg: store the method's signature for future reporting, start counting the number of lines... whatever).
A final suggestion:
As hinted in comments to the question, and depending on your goals, you may be able to reuse existing utility programs to perform directly, or indirectly these goals.
Also, because indeed messing with parsers for these sophisticated languages may be somewhat overkill for you possibly simple and possibly error-tolerant goals, the Regular Expressions approach may fit the bill, somehow; the fact of the matter is that none of these languages are regular nor context free, so success with regex will be highly dependent on the eventual goals and on the input data (programs).
Yet another suggestion!
See Larry Lustig's answer! Introspection may simplify much of you task as well. The implication is that you'd need to a) write your logic within each of the the underlying language b) integrate/load the programs to be inspected. All depends, but again, a possible way out from the -let's be fair- relatively heavy investment with formal grammar tools.
For Python, the situation is trivial: there is a Python parser in the standard library as well as a more high-level module for manipulating ASTs.
Also, Python has a somewhat simple grammar (at least if you use the trick to keep an indentation stack in your lexer and inject fake BEGIN and END tokens in your token stream, so that you can treat Python as a simple keyword delimited Algol-like language in your parser), so it is often used as an example grammar for parser generators, which means that you can find literally dozens of Python parsers for pretty much every single parser generator, programming language and platform out there. (E.g., here is a Haskell module implementing a Python lexer and parser.)
For Ruby, there are quite a number of parsers available.
Ruby is incredibly hard to parse, so if you need full fidelity, you pretty much have to use the original YACC grammar file from the YARV Ruby implementation. (parse.y in the top-level source directory.) JRuby's parser is derived from that file, and it is the only one of the implementation parsers that has been explicitly designed to also be used by other clients and not just the interpreter itself. (For example, the Eclipse RDT plugin, the Eclipse DLTK/Ruby plugin, the NetBeans Ruby plugin and the jEdit Ruby syntax highlighting all use JRuby's parser.) To facilitate that, JRuby's parser has actually been repackaged as a separate project.
Of course, there are YACC clones for pretty much every language on the planet. However, be aware that YARV does not use a lex generated scanner. It uses a hand-written scanner in C, and also the YACC grammar contains quite a bit of semantic actions in C. Those parts will have to be re-implemented (like they were in JRuby).
The XRuby compiler is the only full Ruby implementation that does not use YARV's parse.y, it uses an ANTLRv3 grammar and an ANTLRv3 tree grammar that have been developed from scratch. ANTLR can generate parsers for a whole bunch of languages, including for example Java and C#. Its Ruby backend, however, is in dire need of some work.
RedParse is a Ruby parser written in Ruby, which claims to be able to parse all Ruby syntax correctly. It is used, for example, in the YARD Ruby documentation tool to, among other things, extract method names.
ruby_parser is another Ruby parser in Ruby. It is generated from parse.y via the racc parser generator that is part of Ruby's standard library.
YARV actually contains a parser library called ripper, which allows you to parse Ruby code. Unfortunately, it is completely undocumented, so you basically have to figure it out by reading blog posts. Except of course, being undocumented, almost nobody else has figured it out yet, either and written a blog post.
However, for your purposes, you don't actually need a full-blown Ruby parser. You only need enough to extract method names and some other stuff.
RDoc, the Ruby documentation generator, contains a Ruby parser which can parse just enough Ruby to, well, extract method names and some other stuff.
Cardinal is a Ruby implementation for the Parrot Virtual Machine. It does not yet run all of Ruby, but its parser should be powerful enough to support all you need. (The parser is written in the Parrot Grammar Engine, so you will obviously have to run it in Parrot, by for example writing your reporting tool in Perl6.)
tinyrb is another Ruby implementation that does not run full Ruby but contains a better written parser than YARV. In this case, the parser uses Ian Piumarta's leg Parsing Expression Grammar parser generator.
For Ruby and Python, can't you simply introspect the class to learn the name of the methods? You'd have to write the same functionality in each language but (at least in Python) there's hardly anything to it.
The DMS Software Reengineering Toolkit has full, robust C# and Python parsers that automatically build complete ASTs. DMS offers facilities for walking the trees and collecting whatever data you might wish to collect.
Another poster's answer here suggests Ruby is really hard to parse. C++ is also famously hard to parse. DMS has been used to parse some 30 other languages, including full C++ in a number of dialects, so Ruby seems eminently doable. Howeever, DMS doesn't have an off-the-shelf parser for Ruby.

What Lisp is better at parsing?

I'd like to implement a Lisp interpreter in a Lisp dialect mainly as a learning exercise. The one thing I'm thrown off by is just how many choices there are in this area. Primarily, I'm a bit more interested in learning about some of the Lisps that have been around a while (like Scheme or Common Lisp). I don't want to use Clojure to do this for the sheer fact that I've already used it. :-)
So is one of the flavors any better than the others at parsing? And do you think it's a good idea to say implement Scheme in Common Lisp (or vice versa)? Or will there be enough differences between the two to throw me off?
And if it makes any difference, I'd like something that's cross-platform. I have a Windows PC, a Mac, and a Linux box, and I could end up writing this on any of them.
There are some books about that:
SICP chapter 4 and 5
PAIP, chapter 5
LiSP, the whole book explains implementing Lisp
Anatomy of Lisp, old classic about implementing Lisp
All of the above books are highly recommended, though Anatomy of Lisp is oldish, hard to get and hard to read.
Both Scheme and Common Lisp are fine for your task.
Implementing Common Lisp is a larger task, since the language is larger. Usually one implements Common Lisp better in Common Lisp, since there are Common Lisp libraries that can be used for new Common Lisp implementations. ;-)
PLT Scheme is an excellent platform for experimenting with programming languages, especially Lispy languages. PLT has an extensible parser (usually called a reader in Scheme) that provides reader macros to manipulate the built in syntax; or you can completely replace the reader with your own. If you'd rather use traditional lex/yacc style parsers and lexers, PLT comes with a parser-tools module that provides those, too. As a bonus, it has comprehensive documentation and a repository for third-party packages (two things that are missing from a lot of Schemes).
The reference implementation of Arc (arclanguage.org) is a fairly simple and readable
example of building a language that compiles to Scheme. It uses PLT's reader mostly, with a couple of reader macros to change the bits of Scheme syntax that differ from Arc's. There's also a JavaScript implementation available from PLT's package repository (planet.plt-scheme.org) if you want to see how to implement a non-Lisp language.

Resources