Cascading errors involving "Expected incomplete structured construct" - f#

Given the following code:
namespace Backend
open System
open System.Linq
open Npgsql
module helpers =
let rec second_elms lst =
match lst with
| [] -> []
| (d,o)::xs -> o::(second_elms xs)
let folder acc elm =
let result_list,acc_to_substract = acc
result_list::(elm-acc_to_substract),elm
type ChartManager() =
static member ConvertOutputNumbersToDifferenceSegments(listOfOutputValuesForADay: list<DateTime*int>) =
let secs = helpers.second_elms listOfOutputValuesForADay
let trans = List.fold
helpers.folder
([],snd(secs.First()))
secs.Tail
let sndDateTime = fst(listOfOutputValuesForADay.ElementAt(1))
for each_output in fst(trans) do
yield (sndDateTime,each_output)
It's giving me lots of errors, but I guess the majority are just cascading errors from the main one in the "trans" block, which says (highlighting the word helpers):
Unexpected identifier in binding. Expected incomplete structured construct at or before this point or other token.
What does this mean??

To properly indent with light syntax
let trans =
List.fold
helpers.folder
([],snd(secs.First()))
secs.Tail
or
let trans = List.fold
helpers.folder
([],snd(secs.First()))
secs.Tail
If it's a single statement, to split on multiple lines you need to indent passed the start of the statement.

When you do
let trans =
the first thing after the equal sign = sets a new offside column. As long as you are writing only on or after the off-side column, you're defining the binding of trans. As soon as you write to the left of it, you're back outside trans, in this case defining the member ConvertOutputNumbersToDifferenceSegments.
However, when you go back outside, you often(*) have to go all the way back to some previous offside column. In this case the nearest one is set by the l in let trans ....
Altogether:
(* v ----------------- offside column set by 'let' *)
(* v------ offside column set by '='. *)
let trans = List.fold
helpers.folder (* <-- Half way back. Error. *)
...
let trans = List.fold
helpers.folder (* <-- Binding 'trans'. *)
...
let trans = List.fold
helpers.folder (* <-- Also binding 'trans'. *)
...
let trans = List.fold (* <-- Binding 'trans'. *)
helpers.folder (* <-- Binding in member `Convert...`
... Yields type error in your case. *)
There's a brief guide to offside columns here.
(*) The exact rules vary by context.

At a guess, you are confusing the indentation as helpers.folder is not indented as far as List.fold
I would change it to
let trans = List.fold helpers.folder ([],snd(secs.First())) secs.Tail

Related

implementing an equivalent of the C#'s null test in F#

I'm using quite a lot this piece of code:
let inline (||>) (a: 'a option) (b: 'a -> unit) = if a.IsSome then b a.Value
so I can do things like
myData ||> DoSomethingWithIt
without having to test if myData is Some or None since there are many functions that don't generally need to test for an option. This avoid to put the test in the function itself.
I would like to extend this to methods of a type where I could do like C#'s:
myData?.DoSomethingWithIt
essentially replacing:
if myData.IsSome then myData.Value.DoSomethingWithIt
with some syntactic sugar.
but I have no idea how I could do the operator so that it allows to get access to the type's method in the expression. Is that possible in F#?
I'm also open to learn about why it could be a bad idea if it is :)
Depending on your return type of DoSomethingWithIt the F# library offers a few standard functions for working with Options that can be turned into operators.
let x = Some 1
let aPrinter a = printfn "%i" a
let add1 a = a + 1
let (|?>) opt f = Option.iter f opt
let (|??>) opt f = Option.map f opt
x |?> aPrinter
let y = x |??> add1
You can also consider redefining your DoSomethingWithIt to work with an option by partial application.
let DoSomethingWithIt' = Option.iter DoSomethingWithIt
let something' = Option.iter (fun (b:B) -> b.DoSomethingWithIt()) //For instance methods
That may end up being a lot of work depending how many functions you are dealing with.
Ultimately you shouldn't try to hide the fact you are working with Options. By making something an Option you are telling the compiler that you aren't sure whether it exists or not. It is trying to help you by forcing you to deal with the None case. If there are lots of cases in your code where you know your Option is Some then there's probably a larger architectural issue in your code and you should try to lift all your Option<'T> to just T prior to doing work with them. e.g.:
let lift xs =
[
for x in xs do
match x with
| Some x -> yield x
| None -> ()
]
Have a look at Option.iter. It has the same signature as your operator.
There is no analogical syntax for such constructions but F# have alternatives.
The easiest way is to use FSharpx.Extras library and FSharpx.Option.maybe computation expression which will allow you to use Option related operations.
open FSharpx.Option
let a = Some 1
let b = maybe {
let! v = a
return v + 3
} // b is (Some 4)
let c : int option = None
let d = maybe {
let! v = c
return v + 3 // this line won't be reached
} // d is None
I believe that the ?. operator in c# is a syntactic sugar that hides the if statement checking for null before invoking a member of the type. Even if you could make it work the way you plan, I feel that it would go against the FP principles and could cause more problems down the line.
The Option module contains probably most of what you need already. The iter function allows to call a function on the value of the Option if that value is present (Some).
If you have situation that your input parametes can be nulls, but not options, you can use the Option.ofObj function that will convert the parameter to an Option with Some if the parameter is not null, else None.
So assuming that your function DoSomethingWithit accepts a string and returns unit:
let DoSomethingWithIt = //(string -> unit)
printf "%s; "
You can use this more verbose syntax to (for example) iterate over nullable values in your list:
let lst = [ "data"; "data 2"; null; "data3" ]
lst
|> List.iter (fun v -> v |> Option.ofObj |> Option.iter DoSomethingWithIt)
Alternatively you can compose the Optioni.ofObj and Option.iter DoSomethingWithIt functions and do something like
let SafeDoSomethingWithIt = //(string -> unit)
Option.ofObj >> Option.iter DoSomethingWithIt
This gives you safe invocation:
let lst2 = [ "data"; "data 2"; null; "data3" ]
lst2
|> List.iter SafeDoSomethingWithIt
You can generalize the combination of the functions returning unit (but not only)
let makeSafe fn =
Option.ofObj >> Option.iter fn
Then you can create a series of safe functions:
let SafeDoSomethingWithIt = makeSafe DoSomethingWithIt
let safePrint = makeSafe (printf "%s; ")
//...etc
Then this still works:
lst2
|> List.iter SafeDoSomethingWithIt
lst2
|> List.iter safePrint
You can also write a wrapper for functions returning values using Option.bind function.
let makeSafeReturn fn = //(string -> string option)
Option.ofObj >> Option.bind fn

Dynamic Lookup in F#

Can somebody help me with article of Tomas Petricek: http://tomasp.net/blog/fsharp-dynamic-lookup.aspx/#dynfslinks?
The problem is that it is severely outdated. I understand that namespaces
open Microsoft.FSharp.Quotations.Typed
open Microsoft.FSharp.Quotations.Raw
are gone. So I removed the openings. But there are still errors. "Typed" is not defined. "RecdGet" is not defined. And I suspect they are not the last. I'm trying to prove to my boss that F# is good to use for database normalization. Dynamic lookup of fields would really helped me to deal with similarly named fields having different prefixes.
There is also post of Tomas on fpish: https://fpish.net/topic/None/57493, which I understand predates the article
Here's a rough equivalent:
open Microsoft.FSharp.Quotations
open Microsoft.FSharp.Quotations.Patterns
type DynamicMember<'t,'u> = Expr<'t -> 'u>
let getValueReader (expr:DynamicMember<'recdT, 'fieldT>) =
// Match the quotation representing the symbol
match expr with
| Lambda(v, PropertyGet (Some (Var v'), pi, [])) when v = v' ->
// It represents reading of the F# record field..
// .. get a function that reads the record field using F# reflection
let rdr = Reflection.FSharpValue.PreComputeRecordFieldReader pi
// we're not adding any additional processing, so we just
// simply add type conversion to the correct types & return it
((box >> rdr >> unbox) : 'recdT -> 'fieldT)
| _ ->
// Quotation doesn't represent symbol - this is an error
failwith "Invalid expression - not reading record field!"
type SampleRec = { Str : string; Num : int }
let readStrField = getValueReader <# fun (r : SampleRec) -> r.Str #>
let readNumField = getValueReader <# fun (r : SampleRec) -> r.Num #>
let rc = { Str = "Hello world!"; Num = 42 }
let s, n = readStrField rc, readNumField rc
printfn "Extracted: %s, %d" s n

How do I compose a list of functions?

If I have a type named Person, and list of functions, for example...
let checks = [checkAge; checkWeight; checkHeight]
...where each function is of the type (Person -> bool), and I want to do the equivalent of...
checkAge >> checkWeight >> checkHeight
...but I don't know in advance what functions are in the list, how would I do it?
I tried the following...
checks |> List.reduce (>>)
...but this gives the following error...
error FS0001: Type mismatch. Expecting a
(Person -> bool) -> (Person -> bool) -> Person -> bool
but given a
(Person -> bool) -> (bool -> 'a) -> Person -> 'a
The type 'Person' does not match the type 'bool'
What am I doing wrong?
It looks like Railway oriented programming would be a good fit here.
If you choose to go this route, you basically have two options.
You can either go all in, or the quick route.
Quick route
You rewrite your validation functions to take a Person option instead of just plain Person.
let validAge (record:Record option) =
match record with
| Some rec when rec.Age < 65 && rec.Age > 18 -> record
| None -> None
Now you should be able to easily chain your function.
checks |> List.reduce (>>)
All in
Alternatively, if you are lazy and don't want to match .. with in every validation function, you can write some more code.
(samples taken from [1])
First there's a bit of setup to do.
We'll define a special return type, so we can get meaningful error messages.
type Result<'TSuccess,'TFailure> =
| Success of 'TSuccess
| Failure of 'TFailure
A bind function, to bind the validations together
let bind switchFunction =
function
| Success s -> switchFunction s
| Failure f -> Failure f
You'll have to rewrite your validation functions as well.
let validAge (record:Record) =
if record.Age < 65 && record.Age > 18 then Success input
else Failure "Not the right age bracket"
Now combine with
checks |> List.reduce (fun acc elem -> acc >> bind elem)
Either way, check out the original article.
There's much more there you might be able to use :)
Edit: I just noticed that I was too slow in writing this answer once again.
Besides, I think Helge explained the concetp better than I did as well.
You may somehow have stumbled upon a dreaded concept. Apperently its the Voldemort (dont say his name!) of functional programming.
With no further ado lets walk right into the code:
type Person =
{ Name : string
Age : int
Weight : int
Height : int }
type Result =
| Ok of Person
| Fail
let bind f m =
match m with
| Ok p -> f p
| _ -> Fail
let (>=>) f1 f2 = f1 >> (bind f2)
let checkAge p =
if p.Age > 18 then Ok(p)
else Fail
let checkWeight p =
if p.Weight < 80 then Ok(p)
else Fail
let checkHeight p =
if p.Height > 150 then Ok(p)
else Fail
let checks = [ checkAge; checkWeight; checkHeight ]
let allcheckfunc = checks |> List.reduce (>=>)
let combinedChecks =
checkAge
>=> checkWeight
>=> checkHeight
let p1 =
{ Name = "p1"
Age = 10
Weight = 20
Height = 110 }
let p2 =
{ Name = "p2"
Age = 19
Weight = 65
Height = 180 }
allcheckfunc p1
combinedChecks p1
allcheckfunc p2
combineChecks p2
At this point I could throw around a lot of weirdo lingo (not really true, I couldnt...), but lets just look at what I have done.
I dropped your return value of bool and went for another type (Result) with either (mark that keyword!) Ok or Fail.
Then made a helper (bind) to wrap and unwrapp stuff from that Result-type.
And a new operator (>=>) to combine the stuff in reduce.
Mind that the first check-function to Fail will shortcut the entire chain and more or less immediately (not calling the other functions) return Fail. In addition you will not know where in this chain it did Fail or which functions ahead of any Fail did actually Ok.
There are methods to also accumulate the errors as you go along, so that you get get a feedback of type: "the checkAge returned Fail, but the others was great success"
The code is mostly stolen from here: http://fsharpforfunandprofit.com/posts/recipe-part2/
And you may want to read about the entire website of Wlaschin and even a lot more to get into the finer and harder details if wanted.
Good luck on your journey to the upper floors of the Ivory Tower. ;-)
Footnote: This is called an Either-monad usually. Its not entirely finished and what not in the above code, but never mind... I think it will work in your case...
The >> operator is useful if you have functions that perform some transformation. For example, if you had a list of functions Person -> Person that turn one person into another.
In your case, it seems that you have functions Person -> bool and you want to build a composed function that returns true if all functions return true.
Using List.reduce you can write:
checks|> List.reduce (fun f g -> (fun p -> f p && g p))
Perhaps an easier option is to just write a function that takes a person and uses List.forall:
let checkAll checks person = checks |> List.forall (fun f -> f person)

Generic type annotation in F#

I got the following error:
Error 2 Value restriction. The value 'gbmLikelihood' has been inferred to have generic type val gbmLikelihood : (float -> '_a -> float [] -> float) when '_a :> seq<float> Either make the arguments to 'gbmLikelihood' explicit or, if you do not intend for it to be generic, add a type annotation.
and this type is exactly what I want. What do I have to do to make it work, and why doesn't it just work without intervention?
EDIT:
The error comes from this file (its short, so I paste the whole lot):
module Likelihood
open System
let likelihood getDrift getVol dt data parameters =
let m = getDrift data parameters
let s = getVol data parameters
let N = float (Seq.length data)
let sqrt_dt = Math.Sqrt dt
let constant = -0.5*Math.Log(2.0*Math.PI*dt)*N
let normalizedResidue observation = (observation - (m - 0.5*s*s)*dt)/(s*sqrt_dt)
let residueSquared observation =
let r = normalizedResidue observation in r*r
let logStdDev = Math.Log s
constant - logStdDev*N - 0.5* (data |> Seq.sumBy residueSquared)
let gbmLikelihood = likelihood (fun data p -> Array.get p 0) (fun datac p -> Array.get p 1)
This error can happen when you declare a value that has a generic type. See for example this past SO question. In your case, the type suggests that you are trying to define a function, but the compiler does not see it as a syntactic function. This can happen if you perform some effects and then return function using the lambda syntax:
let wrong =
printfn "test"
(fun x -> x)
To avoid the problem, you need to write the function using the function syntax:
printfn "test"
let wrong x = x
EDIT: In your concrete example, the function gbmLikelihood is created as a result of a partial function application. To make it compile, you need to turn it into an explicit function:
let gbmLikelihood parameters =
likelihood (fun data p -> Array.get p 0) (fun datac p -> Array.get p 1) parameters
For more information why this is the case & how it works, see also this great article on value restriction in F#.
Instead of making the parameters of gbmLikelihood explicit you might also just add a generic type annotation to the function:
let gbmLikelihood<'a> =
likelihood (fun data p -> Array.get p 0) (fun datac p -> Array.get p 1)

error with f# generic follow Expert Fsharp book example

I'm reading Expert F# book and I found this code
open System.Collections.Generic
let divideIntoEquivalenceClasses keyf seq =
// The dictionary to hold the equivalence classes
let dict = new Dictionary<'key,ResizeArray<'T>>()
// Build the groupings
seq |> Seq.iter (fun v ->
let key = keyf v
let ok,prev = dict.TryGetValue(key)
if ok then prev.Add(v)
else let prev = new ResizeArray<'T>()
dict.[key] <- prev
prev.Add(v))
dict |> Seq.map (fun group -> group.Key, Seq.readonly group.Value)
and the example use:
> divideIntoEquivalenceClasses (fun n -> n % 3) [ 0 .. 10 ];;
val it : seq<int * seq<int>>
= seq [(0, seq [0; 3; 6; 9]); (1, seq [1; 4; 7; 10]); (2, seq [2; 5; 8])]
first for me this code is really ugly, even if this is safe, It looks more similar to imperative languages than to functional lang..specially compared to clojure. But the problem is not this...I'm having problems with the Dictionary definition
when I type this:
let dict = new Dictionary<'key,ResizeArray<'T>>();;
I get this:
pruebafs2a.fs(32,5): error FS0030: Value restriction. The value 'dict' has been inferred to have generic type
val dict : Dictionary<'_key,ResizeArray<'_T>> when '_key : equality
Either define 'dict' as a simple data term, make it a function with explicit arguments or, if you do not intend for it to be generic, add a type annotation.
is It ok?...
thanks so much
improve question:
Ok I've been reading about value restriction and I found this helpfull information
In particular, only function definitions and simple immutable data
expressions are automatically generalized
...ok..this explains why
let dict = new Dictionary<'key,ResizeArray<'T>>();;
doesn't work...and show 4 different techniques, although in my opinion they only resolve the error but aren't solutions for use generic code:
Technique 1: Constrain Values to Be Nongeneric
let empties : int list [] = Array.create 100 []
Technique 3: Add Dummy Arguments to Generic Functions When Necessary
let empties () = Array.create 100 []
let intEmpties : int list [] = empties()
Technique 4: Add Explicit Type Arguments When Necessary (similar to tec 3)
let emptyLists = Seq.init 100 (fun _ -> [])
> emptyLists<int>;;
val it : seq<int list> = seq [[]; []; []; []; ...]
----- and the only one than let me use real generic code ------
Technique 2: Ensure Generic Functions Have Explicit Arguments
let mapFirst = List.map fst //doesn't work
let mapFirst inp = List.map fst inp
Ok, in 3 of 4 techniques I need resolve the generic code before can work with this...now...returning to book example...when the compile knows the value for 'key and 'T
let dict = new Dictionary<'key,ResizeArray<'T>>()
in the scope the code is very generic for let key be any type, the same happen with 'T
and the biggest dummy question is :
when I enclose the code in a function (technique 3):
let empties = Array.create 100 [] //doesn't work
let empties () = Array.create 100 []
val empties : unit -> 'a list []
I need define the type before begin use it
let intEmpties : int list [] = empties()
for me (admittedly I'm a little dummy with static type languages) this is not real generic because it can't infer the type when I use it, I need define the type and then pass values (not define its type based in the passed values) exist other way define type without be so explicit..
thanks so much..really appreciate any help
This line
let dict = new Dictionary<'key,ResizeArray<'T>>();;
fails because when you type the ;; the compiler doesn't know what 'key and 'T are. As the error message states you need to add a type annotation, or allow the compiler to infer the type by using it later or make it a function
Examples
Type annotation change
let dict = new Dictionary<int,ResizeArray<int>>();;
Using types later
let dict = new Dictionary<'key,ResizeArray<'T>>()
dict.[1] <- 2
using a function
let dict() = new Dictionary<'key,ResizeArray<'T>>();;
This actually doesn't cause an issue when it's defined all together. That is, select the entire block that you posted and send it to FSI in one go. I get this:
val divideIntoEquivalenceClasses :
('T -> 'key) -> seq<'T> -> seq<'key * seq<'T>> when 'key : equality
However, if you type these individually into FSI then as John Palmer says there is not enough information in that isolated line for the interpreter to determine the type constraints. John's suggestions will work, but the original code is doing it correctly - defining the variable and using it in the same scope so that the types can be inferred.
for me this code is really ugly, even if this is safe, It looks more similar to imperative languages than to functional lang.
I agree completely – it's slightly tangential to your direct question, but I think a more idiomatic (functional) approach would be:
let divideIntoEquivalenceClasses keyf seq =
(System.Collections.Generic.Dictionary(), seq)
||> Seq.fold (fun dict v ->
let key = keyf v
match dict.TryGetValue key with
| false, _ -> dict.Add (key, ResizeArray(Seq.singleton v))
| _, prev -> prev.Add v
dict)
|> Seq.map (function KeyValue (k, v) -> k, Seq.readonly v)
This allows sufficient type inference to obviate the need for your question in the first place.
The workarounds proposed by the other answers are all good. Just to clarify based on your latest updates, let's consider two blocks of code:
let empties = Array.create 100 []
as opposed to:
let empties = Array.create 100 []
empties.[0] <- [1]
In the second case, the compiler can infer that empties : int list [], because we are inserting an int list into the array in the second line, which constrains the element type.
It sounds like you'd like the compiler to infer a generic value empties : 'a list [] in the first case, but this would be unsound. Consider what would happen if the compiler did that and we then entered the following two lines in another batch:
empties.[0] <- [1] // treat 'a list [] as int list []
List.iter (printfn "%s") empties.[0] // treat 'a list [] as string list []
Each of these lines unifies the generic type parameter 'a with a different concrete type (int and string). Either of these unifications is fine in isolation, but they are incompatible with each other and would result in treating the int value 1 inserted by the first line as a string when the second line is executed, which is clearly a violation of type safety.
Contrast this with an empty list, which really is generic:
let empty = []
Then in this case, the compiler does infer empty : 'a list, because it's safe to treat empty as a list of different types in different locations in your code without ever impacting type safety:
let l1 : int list = empty
let l2 : string list = empty
let l3 = 'a' :: empty
In the case where you make empties the return value of a generic function:
let empties() = Array.create 100 []
it is again safe to infer a generic type, since if we try our problematic scenario from before:
empties().[0] <- [1]
List.iter (printfn "%s") (empties().[0])
we are creating a new array on each line, so the types can be different without breaking the type system.
Hopefully this helps explain the reasons behind the limitation a bit more.

Resources