error with f# generic follow Expert Fsharp book example - f#

I'm reading Expert F# book and I found this code
open System.Collections.Generic
let divideIntoEquivalenceClasses keyf seq =
// The dictionary to hold the equivalence classes
let dict = new Dictionary<'key,ResizeArray<'T>>()
// Build the groupings
seq |> Seq.iter (fun v ->
let key = keyf v
let ok,prev = dict.TryGetValue(key)
if ok then prev.Add(v)
else let prev = new ResizeArray<'T>()
dict.[key] <- prev
prev.Add(v))
dict |> Seq.map (fun group -> group.Key, Seq.readonly group.Value)
and the example use:
> divideIntoEquivalenceClasses (fun n -> n % 3) [ 0 .. 10 ];;
val it : seq<int * seq<int>>
= seq [(0, seq [0; 3; 6; 9]); (1, seq [1; 4; 7; 10]); (2, seq [2; 5; 8])]
first for me this code is really ugly, even if this is safe, It looks more similar to imperative languages than to functional lang..specially compared to clojure. But the problem is not this...I'm having problems with the Dictionary definition
when I type this:
let dict = new Dictionary<'key,ResizeArray<'T>>();;
I get this:
pruebafs2a.fs(32,5): error FS0030: Value restriction. The value 'dict' has been inferred to have generic type
val dict : Dictionary<'_key,ResizeArray<'_T>> when '_key : equality
Either define 'dict' as a simple data term, make it a function with explicit arguments or, if you do not intend for it to be generic, add a type annotation.
is It ok?...
thanks so much
improve question:
Ok I've been reading about value restriction and I found this helpfull information
In particular, only function definitions and simple immutable data
expressions are automatically generalized
...ok..this explains why
let dict = new Dictionary<'key,ResizeArray<'T>>();;
doesn't work...and show 4 different techniques, although in my opinion they only resolve the error but aren't solutions for use generic code:
Technique 1: Constrain Values to Be Nongeneric
let empties : int list [] = Array.create 100 []
Technique 3: Add Dummy Arguments to Generic Functions When Necessary
let empties () = Array.create 100 []
let intEmpties : int list [] = empties()
Technique 4: Add Explicit Type Arguments When Necessary (similar to tec 3)
let emptyLists = Seq.init 100 (fun _ -> [])
> emptyLists<int>;;
val it : seq<int list> = seq [[]; []; []; []; ...]
----- and the only one than let me use real generic code ------
Technique 2: Ensure Generic Functions Have Explicit Arguments
let mapFirst = List.map fst //doesn't work
let mapFirst inp = List.map fst inp
Ok, in 3 of 4 techniques I need resolve the generic code before can work with this...now...returning to book example...when the compile knows the value for 'key and 'T
let dict = new Dictionary<'key,ResizeArray<'T>>()
in the scope the code is very generic for let key be any type, the same happen with 'T
and the biggest dummy question is :
when I enclose the code in a function (technique 3):
let empties = Array.create 100 [] //doesn't work
let empties () = Array.create 100 []
val empties : unit -> 'a list []
I need define the type before begin use it
let intEmpties : int list [] = empties()
for me (admittedly I'm a little dummy with static type languages) this is not real generic because it can't infer the type when I use it, I need define the type and then pass values (not define its type based in the passed values) exist other way define type without be so explicit..
thanks so much..really appreciate any help

This line
let dict = new Dictionary<'key,ResizeArray<'T>>();;
fails because when you type the ;; the compiler doesn't know what 'key and 'T are. As the error message states you need to add a type annotation, or allow the compiler to infer the type by using it later or make it a function
Examples
Type annotation change
let dict = new Dictionary<int,ResizeArray<int>>();;
Using types later
let dict = new Dictionary<'key,ResizeArray<'T>>()
dict.[1] <- 2
using a function
let dict() = new Dictionary<'key,ResizeArray<'T>>();;

This actually doesn't cause an issue when it's defined all together. That is, select the entire block that you posted and send it to FSI in one go. I get this:
val divideIntoEquivalenceClasses :
('T -> 'key) -> seq<'T> -> seq<'key * seq<'T>> when 'key : equality
However, if you type these individually into FSI then as John Palmer says there is not enough information in that isolated line for the interpreter to determine the type constraints. John's suggestions will work, but the original code is doing it correctly - defining the variable and using it in the same scope so that the types can be inferred.

for me this code is really ugly, even if this is safe, It looks more similar to imperative languages than to functional lang.
I agree completely – it's slightly tangential to your direct question, but I think a more idiomatic (functional) approach would be:
let divideIntoEquivalenceClasses keyf seq =
(System.Collections.Generic.Dictionary(), seq)
||> Seq.fold (fun dict v ->
let key = keyf v
match dict.TryGetValue key with
| false, _ -> dict.Add (key, ResizeArray(Seq.singleton v))
| _, prev -> prev.Add v
dict)
|> Seq.map (function KeyValue (k, v) -> k, Seq.readonly v)
This allows sufficient type inference to obviate the need for your question in the first place.

The workarounds proposed by the other answers are all good. Just to clarify based on your latest updates, let's consider two blocks of code:
let empties = Array.create 100 []
as opposed to:
let empties = Array.create 100 []
empties.[0] <- [1]
In the second case, the compiler can infer that empties : int list [], because we are inserting an int list into the array in the second line, which constrains the element type.
It sounds like you'd like the compiler to infer a generic value empties : 'a list [] in the first case, but this would be unsound. Consider what would happen if the compiler did that and we then entered the following two lines in another batch:
empties.[0] <- [1] // treat 'a list [] as int list []
List.iter (printfn "%s") empties.[0] // treat 'a list [] as string list []
Each of these lines unifies the generic type parameter 'a with a different concrete type (int and string). Either of these unifications is fine in isolation, but they are incompatible with each other and would result in treating the int value 1 inserted by the first line as a string when the second line is executed, which is clearly a violation of type safety.
Contrast this with an empty list, which really is generic:
let empty = []
Then in this case, the compiler does infer empty : 'a list, because it's safe to treat empty as a list of different types in different locations in your code without ever impacting type safety:
let l1 : int list = empty
let l2 : string list = empty
let l3 = 'a' :: empty
In the case where you make empties the return value of a generic function:
let empties() = Array.create 100 []
it is again safe to infer a generic type, since if we try our problematic scenario from before:
empties().[0] <- [1]
List.iter (printfn "%s") (empties().[0])
we are creating a new array on each line, so the types can be different without breaking the type system.
Hopefully this helps explain the reasons behind the limitation a bit more.

Related

F# hidden mutation

Anyone have a decent example, preferably practical/useful, they could post demonstrating the concept?
I came across this term somewhere that I’m unable to find, probably it has to do something with a function returning a function while enclosing on some mutable variable. So there’s no visible mutation.
Probably Haskell community has originated the idea where mutation happens in another area not visible to the scope. I maybe vague here so seeking help to understand more.
It's a good idea to hide mutation, so the consumers of the API won't inadvartently change something unexpectedly. This just means that you have to encapsulate your mutable data/state. This can be done via objects (yes, objects), but what you are referring to in your question can be done with a closure, the canonical example is a counter:
let countUp =
let mutable count = 0
(fun () -> count <- count + 1
count)
countUp() // 1
countUp() // 2
countUp() // 3
You cannot access the mutable count variable directly.
Another example would be using mutable state within a function so that you cannot observe it, and the function is, for all intents and purposes, referentially transparent. Take for example the following function that reverses a string not character-wise, but rather by taking individual text elements (which, depending on language, can be more than one character):
let reverseStringU s =
if Core.string.IsNullOrEmpty s then s else
let rec iter acc (ee : System.Globalization.TextElementEnumerator) =
if not <| ee.MoveNext () then acc else
let e = ee.GetTextElement ()
iter (e :: acc) ee
let inline append x s = (^s : (member Append : ^x -> ^s) (s, x))
let sb = System.Text.StringBuilder s.Length
System.Globalization.StringInfo.GetTextElementEnumerator s
|> iter []
|> List.fold (fun a e -> append e a) sb
|> string
It uses a StringBuilder internally but you cannot observe this externally.

Why does this confuse the F# compiler's type inference?

No problem here:
module Seq =
let private rnd = Random Environment.TickCount
let random =
fun (items : 'T seq) ->
let count = Seq.length items
items |> Seq.nth (rnd.Next count)
The signature of Seq.random is items:seq<'T> -> 'T. All good.
Yes, I know that I could just let random items = [...], that is not the point.
The point is that items is suddenly constrained to be type seq<obj> when I do this:
module Seq =
let random =
let rnd = Random Environment.TickCount
fun (items : 'T seq) ->
let count = Seq.length items
items |> Seq.nth (rnd.Next count)
... i.e. I add the Random object as a closure. If I hover over random, Intellisense shows me that the signature has become items:seq<obj> -> obj.
Interestingly, if I select the code and hit [Alt]+[Enter] to execute it in F# Interactive, the signature shows as seq<'a> -> 'a. WTH??
So, what's going on, here? Why the confusion and inconsistency in type inference?
This is due to the so-called Value Restriction. Cutting a long story short, syntactical values cannot be generic, because it might break things when mutations occur, and the compiler cannot always reliably prove immutability. (note that, even though random is a function semantically, it is still a value syntactically, and that's what matters)
But sometimes the compiler can prove immutability. This is why your first example works: when the right side of a let is a straight up lambda expression, the compiler can tell with certainty that it is immutable, and so it lets this pass.
Another example would be let x = [] - here the compiler can see that the nil list [] is immutable. On the other hand, let x = List.append [] [] won't work, because the compiler can't prove immutability in that case.
This "relaxation" of value restriction is done in F# on a case-by-case basis. F# compiler only goes as far as to handle a few special cases: literals, lambda expressions, etc., but it doesn't have a full-fledged mechanism for proving immutability in general. This is why, once you step outside of those special cases, you're not allowed to have generic values.
You can technically defeat this by adding explicit type arguments. Logically, this tells the compiler "Yes, I know it's a generic value, and that's what I meant for it to be".
let random<'t> : seq<'t> -> 't =
let rnd = Random Environment.TickCount
fun items ->
let count = Seq.length items
items |> Seq.nth (rnd.Next count)
let x = random [1;2;3]
But this will still not do what you want, because behind the scenes, such definition will be compiled to a parameterless generic method, and every time you reference such "value", the method will be called and return you a new function - with a brand new rnd baked in for every call. In other words, the above code will be equivalent to this:
let random() =
let rnd = Random Environment.TickCount
fun items ->
let count = Seq.length items
items |> Seq.nth (rnd.Next count)
let x = random() [1;2;3]

Add calculated key to collection

Please consider this dataset, composed by man and woman, and that I filter in a second moment according to few variables:
type ls = JsonProvider<"...">
let dt = ls.GetSamples()
let dt2 =
dt |> Seq.filter (fun c -> c.Sex = "male" && c.Height > Some 150)
dt2
[{"sex":"male","height":180,"weight":85},
{"sex":"male","height":160" "weight":60},
{"sex":"male","height":180,"weight":85}]
Lets suppose that I would like to add a fourth key "body mass index" or "bmi", and that its value is roughly given by "weight"/"height". Hence I expect:
[{"sex":"male","height":180,"weight":85, "bmi":(180/85)},
{"sex":"male","height":160" "weight":60, "bmi":(160/60},
{"sex":"male","height":180,"weight":85, "bmi":(180/85)}]
I thought that map.Add may help.
let dt3 = dt2.Add("bmi", (dt2.Height/dt2.Weight))
Unfortunately, it returns an error:
error FS0039: The field, constructor or member 'Add' is not defined
I am sure there are further errors in my code, but without this function I cannot actually look for them. Am I, at least, approaching the problem correctly?
Creating modified versions of the JSON is sadly one thing that the F# Data type provider does not make particularly easy. What makes that hard is the fact that we can infer the type from the source JSON, but we cannot "predict" what kind of fields people might want to add.
To do this, you'll need to access the underlying representation of the JSON value and operate on that. For example:
type ls = JsonProvider<"""
[{"sex":"male","height":180,"weight":85},
{"sex":"male","height":160,"weight":60},
{"sex":"male","height":180,"weight":85}]""">
let dt = ls.GetSamples()
let newJson =
dt
|> Array.map (fun recd ->
// To do the calculation, you can access the fields via inferred types
let bmi = float recd.Height / float recd.Weight
// But now we need to look at the underlying value, check that it is
// a record and extract the properties, which is an array of key-value pairs
match recd.JsonValue with
| JsonValue.Record props ->
// Append the new property to the existing properties & re-create record
Array.append [| "bmi", JsonValue.Float bmi |] props
|> JsonValue.Record
| _ -> failwith "Unexpected format" )
// Re-create a new JSON array and format it as JSON
JsonValue.Array(newJson).ToString()

F# mutable function arguments

Is there a way to have mutable function arguments in F#, that would allow something like
let mutable i = 9
let somefun n = n <- 12; ()
somefun i
(* *not* a real-world example *)
I do understand that this can be made to work by wrapping it into a record type
type SomeRec = { mutable i: int }
let ri = { i = 9 }
let someotherfun r = r.i <- 12; ()
and that this can be done in a similar fashion for class members. However, even after browsing through the whole F# Language Specification (yes, I did!), there seems to be no syntax to allow the first case, and the compiler appears to be quite unhappy about my trying this. I was hoping there would be some sort of type annotation, but mutable cannot be used in such.
I also know that I should not be doing this sort of thing in the first place, but the first case (int binding) and the second (record type) are semantically identical, and any such objection would hold for both cases equally.
So I think that I am missing something here.
You can use ref as arguments
let v = ref 0
let mutate r =
r := 100
mutate v
printfn "%d" !v
Or byref keyword
let mutable v = 0
let mutate (r : byref<_>) =
r <- 100
mutate &v
printfn "%d" v
Use byref keyword which is equivalent to C# ref.
See Passing by reference.

Cyclic lists in F#

Is it just me, or does F# not cater for cyclic lists?
I looked at the FSharpList<T> class via reflector, and noticed, that neither the 'structural equals' or the length methods check for cycles. I can only guess if 2 such primitive functions does not check, that most list functions would not do this either.
If cyclic lists are not supported, why is that?
Thanks
PS: Am I even looking at the right list class?
There are many different lists/collection types in F#.
F# list type. As Chris said, you cannot initialize a recursive value of this type, because the type is not lazy and not mutable (Immutability means that you have to create it at once and the fact that it's not lazy means that you can't use F# recursive values using let rec). As ssp said, you could use Reflection to hack it, but that's probably a case that we don't want to discuss.
Another type is seq (which is actually IEnumerable) or the LazyList type from PowerPack. These are lazy, so you can use let rec to create a cyclic value. However, (as far as I know) none of the functions working with them take cyclic lists into account - if you create a cyclic list, it simply means that you're creating an infinite list, so the result of (e.g.) map will be a potentially infinite list.
Here is an example for LazyList type:
#r "FSharp.PowerPack.dll"
// Valid use of value recursion
let rec ones = LazyList.consDelayed 1 (fun () -> ones)
Seq.take 5 l // Gives [1; 1; 1; 1; 1]
The question is what data types can you define yourself. Chris shows a mutable list and if you write operations that modify it, they will affect the entire list (if you interpret it as an infinite data structure).
You can also define a lazy (potentionally cyclic) data type and implement operations that handle cycles, so when you create a cyclic list and project it into another list, it will create cyclic list as a result (and not a potentionally infinite data structure).
The type declaration may look like this (I'm using object type, so that we can use reference equality when checking for cycles):
type CyclicListValue<'a> =
Nil | Cons of 'a * Lazy<CyclicList<'a>>
and CyclicList<'a>(value:CyclicListValue<'a>) =
member x.Value = value
The following map function handles cycles - if you give it a cyclic list, it will return a newly created list with the same cyclic structure:
let map f (cl:CyclicList<_>) =
// 'start' is the first element of the list (used for cycle checking)
// 'l' is the list we're processing
// 'lazyRes' is a function that returns the first cell of the resulting list
// (which is not available on the first call, but can be accessed
// later, because the list is constructed lazily)
let rec mapAux start (l:CyclicList<_>) lazyRes =
match l.Value with
| Nil -> new CyclicList<_>(Nil)
| Cons(v, rest) when rest.Value = start -> lazyRes()
| Cons(v, rest) ->
let value = Cons(f v, lazy mapAux start rest.Value lazyRes)
new CyclicList<_>(value)
let rec res = mapAux cl cl (fun () -> res)
res
The F# list type is essentially a linked list, where each node has a 'next'. This in theory would allow you to create cycles. However, F# lists are immutable. So you could never 'make' this cycle by mutation, you would have to do it at construction time. (Since you couldn't update the last node to loop around to the front.)
You could write this to do it, however the compiler specifically prevents it:
let rec x = 1 :: 2 :: 3 :: x;;
let rec x = 1 :: 2 :: 3 :: x;;
------------------------^^
stdin(1,25): error FS0260: Recursive values cannot appear directly as a construction of the type 'List`1' within a recursive binding. This feature has been removed from the F# language. Consider using a record instead.
If you do want to create a cycle, you could do the following:
> type CustomListNode = { Value : int; mutable Next : CustomListNode option };;
type CustomListNode =
{Value: int;
mutable Next: CustomListNode option;}
> let head = { Value = 1; Next = None };;
val head : CustomListNode = {Value = 1;
Next = null;}
> let head2 = { Value = 2; Next = Some(head) } ;;
val head2 : CustomListNode = {Value = 2;
Next = Some {Value = 1;
Next = null;};}
> head.Next <- Some(head2);;
val it : unit = ()
> head;;
val it : CustomListNode = {Value = 1;
Next = Some {Value = 2;
Next = Some ...;};}
The answer is same for all languages with tail-call optimization support and first-class functions (function types) support: it's so easy to emulate cyclic structures.
let rec x = seq { yield 1; yield! x};;
It's simplest way to emulate that structure by using laziness of seq.
Of course you can hack list representation as described here.
As was said before, your problem here is that the list type is immutable, and for a list to be cyclic you'd have to have it stick itself into its last element, so that doesn't work. You can use sequences, of course.
If you have an existing list and want to create an infinite sequence on top of it that cycles through the list's elements, here's how you could do it:
let round_robin lst =
let rec inner_rr l =
seq {
match l with
| [] ->
yield! inner_rr lst
| h::t ->
yield h
yield! inner_rr t
}
if lst.IsEmpty then Seq.empty else inner_rr []
let listcycler_sequence = round_robin [1;2;3;4;5;6]

Resources