Is is possible in ruby to set a specific active record call to read dirty - ruby-on-rails

I am looking at a rather large database.. Lets say I have an exported flag on the product records.
If I want an estimate of how many products I have with the flag set to false, I can do a call something like this
Product.where(:exported => false).count.. .
The problem I have is even the count takes a long time, because the table of 1 million products is being written to. More specifically exports are happening, and the value I'm interested in counting is ever changing.
So I'd like to do a dirty read on the table... Not a dirty read always. And I 100% don't want all subsequent calls to the database on this connection to be dirty.
But for this one call, dirty is what I'd like.
Oh.. I should mention ruby 1.9.3 heroku and postgresql.
Now.. if I'm missing another way to get the count, I'd be excited to try that.
OH SNOT one last thing.. this example is contrived.

PostgreSQL doesn't support dirty reads.
You might want to use triggers to maintain a materialized view of the count - but doing so will mean that only one transaction at a time can insert a product, because they'll contend for the lock on the product count in the summary table.
Alternately, use system statistics to get a fast approximation.
Or, on PostgreSQL 9.2 and above, ensure there's a primary key (and thus a unique index) and make sure vacuum runs regularly. Then you should be able to do quite a fast count, as PostgreSQL should choose an index-only scan on the primary key.
Note that even if Pg did support dirty reads, the read would still not return perfectly up to date results because rows would sometimes inserted behind the read pointer in a sequential scan. The only way to get a perfectly up to date count is to prevent concurrent inserts: LOCK TABLE thetable IN EXCLUSIVE MODE.

As soon as a query begins to execute it's against a frozen read-only state because that's what MVCC is all about. The values are not changing in that snapshot, only in subsequent amendments to that state. It doesn't matter if your query takes an hour to run, it is operating on data that's locked in time.
If your queries are taking a very long time it sounds like you need an index on your exported column, or whatever values you use in your conditions, as a COUNT against an indexed an column is usually very fast.

Related

How should I auto-expire entires in an ETS table, while also limiting its total size?

I have a lot of analytics data which I'm looking to aggregate every so often (let's say one minute.) The data is being sent to a process which stores it in an ETS table, and every so often a timer sends it a message to process the table and remove old data.
The problem is that the amount of data that comes in varies wildly, and I basically need to do two things to it:
If the amount of data coming in is too big, drop the oldest data and push the new data in. This could be viewed as a fixed size queue, where if the amount of data hits the limit, the queue would start dropping things from the front as new data comes to the back.
If the queue isn't full, but the data has been sitting there for a while, automatically discard it (after a fixed timeout.)
If these two conditions are kept, I could basically assume the table has a constant size, and everything in it is newer than X.
The problem is that I haven't found an efficient way to do these two things together. I know I could use match specs to delete all entires older than X, which should be pretty fast if the index is the timestamp. Though I'm not sure if this is the best way to periodically trim the table.
The second problem is keeping the total table size under a certain limit, which I'm not really sure how to do. One solution comes to mind is to use an auto-increment field wich each insert, and when the table is being trimmed, look at the first and the last index, calculate the difference and again, use match specs to delete everything below the threshold.
Having said all this, it feels that I might be using the ETS table for something it wasn't designed to do. Is there a better way to store data like this, or am I approaching the problem correctly?
You can determine the amount of data occupied using ets:info(Tab, memory). The result is in number of words. But there is a catch. If you are storing binaries only heap binaries are included. So if you are storing mostly normal Erlang terms you can use it and with a timestamp as you described, it is a way to go. For size in bytes just multiply by erlang:system_info(wordsize).
I haven't used ETS for anything like this, but in other NoSQL DBs (DynamoDB) an easy solution is to use multiple tables: If you're keeping 24 hours of data, then keep 24 tables, one for each hour of the day. When you want to drop data, drop one whole table.
I would do the following: Create a server responsible for
receiving all the data storage messages. This messages should be time stamped by the client process (so it doesn't matter if it waits a little in the message queue). The server will then store then in the ETS, configured as ordered_set and using the timestamp, converted in an integer, as key (if the timestamps are delivered by the function erlang:now in one single VM they will be different, if you are using several nodes, then you will need to add some information such as the node name to guarantee uniqueness).
receiving a tick (using for example timer:send_interval) and then processes the message received in the last N µsec (using the Key = current time - N) and looking for ets:next(Table,Key), and continue to the last message. Finally you can discard all the messages via ets:delete_all_objects(Table). If you had to add an information such as a node name, it is still possible to use the next function (for example the keys are {TimeStamp:int(),Node:atom()} you can compare to {Time:int(),0} since a number is smaller than any atom)

What is the right way to store random numbers in my database?

I am working on an application which will generate unique random numbers and then store them into a database. I will check if a number exists through a HTTP request. Initially, for getting started, I would use around 10,000 numbers.
Is this the right approach?
Generate a random number, and, one by one, store them into an array and continue checking for array uniqueness, and when the array is complete, store the whole array to the database after sorting it.
Use the database and check to see if a number exists or not.
Which database should I use, as the application can scale up to 1 million numbers.
It may be more efficient, particularly if you want to generate 1000000 numbers, to make them one at a time and use validations in the model/database prevent duplicates.
As regards choosing a database, it will depend a little on you intended application. There is some info here: Which is the Best database for Rails application?
I can't comment on using a database directly from ruby without rails because I have not done that. One of the big pluses for rails for me is how easy it makes creating apps that use a database.
A couple thoughts:
If you are storing 10 or 10,000 "random" numbers, what difference does it make whether they are random going into the database, or if the database randomly picks one number of a range of 10,000 sequential numbers? Do you need doubly-random number selections? MySQL, PostgreSQL and other DBMs can generate random numbers, and you can use their random number generator to retrieve a row, so you could either have it return a value directly from its generator, or grab a row. Either way, you don't need to worry about Ruby creating a random value -- unless you really want "triplely"-random numbers. I'd just stick the values of a (1..10_000) range into the database and call that part done and work on a query to grab records randomly.
If you want truly random numbers, you can't guarantee uniqueness. If you're happy with pseudo-random, you still have a problem because you could end up returning duplicates from inside the range unless you track which numbers you've used previously for a particular session. How you track uniqueness across a bunch of sessions is going to be an interesting problem if your site gets popular.
If I was doing this, I'd reverse some of the process. I wouldn't store the "random" values in the database, I'd use Ruby's built-in random number generator, and then probably check the database to see if I'd previously generated that number for that particular session. Overall, fewer values would be stored in the database so lookups to determine uniqueness would happen faster.
That would still be an awkward system to code and would grow inefficient over time as the "unique" records for sessions grew.
To do this without a database I'd create the random/unique range using something like: array = (1..10_000).to_a.shuffle, then each time I needed a value I'd use pop to pull the last value from the randomized array. I'd be tempted to pull from that pool of values for all sessions until it was exhausted, then regenerate it. There'd be a possibility of duplicate "unique" values at that point, but there should be a pretty small chance of the same number reappearing twice in a row.

How to efficiently fetch n most recent rows with GROUP BY in sqlite?

I have a table of event results, and I need to fetch the most recent n events per player for a given list of players.
This is on iOS so it needs to be fast. I've looked at a lot of top-n-per-group solutions that use subqueries or joins, but these run slow for my 100k row dataset even on a macbook pro. So far my dumb solution, since I will only run this with a maximum of 6 players, is to do 6 separate queries. It isn't terribly slow, but there has to be a better way, right? Here's the gist of what I'm doing now:
results_by_pid = {}
player_ids = [1,2,3,4,5,6]
n_results = 6
for pid in player_ids:
results_by_pid[pid] = exec_sql("SELECT *
FROM results
WHERE player_id = #{pid}
ORDER BY event_date DESC
LIMIT n_events")
And then I go on my merry way. But how can I turn this into a single fast query?
There is no better way.
SQL window functions, which might help, are not implemented in SQLite.
SQLite is designed as an embedded database where most of the logic stays in the application.
In contrast to client/server databases where network communication should be avoided, there is no performance disadvantage to mixing SQL commands and program logic.
A less dumb solution requires you to do some SELECT player_id FROM somewhere beforehand, which should be no trouble.
To make the individual queries efficient, ensure you have one index on the two columns player_id and event_date.
This won't be much of an answer, but here goes...
I have found that making things really quick can involve ideas from the nature of the data and schema themselves. For example, searching an ordered list is faster than searching an unordered list, but you have to pay a cost up front - both in design and execution.
So ask yourself if there are any natural partitions on your data that may reduce the number of records SQLite must search. You might ask whether the latest n events fall within a particular time period. Will they all be from the last seven days? The last month? If so then you can construct the query to rule out whole chunks of data before performing more complex searches.
Also, if you just can't get the thing to work quickly, you can consider UX trickery! Soooooo many engineers don't get clever with their UX. Will your query be run as the result of a view controller push? Then set the thing going in a background thread from the PREVIOUS view controller, and let it work while iOS animates. How long does a push animation take? .2 seconds? At what point does your user indicate to the app (via some UX control) which playerids are going to be queried? As soon as he touches that button or TVCell, you can prefetch some data. So if the total work you have to do is O(n log n), that means you can probably break it up into O(n) and O(log n) pieces.
Just some thoughts while I avoid doing my own hard work.
More thoughts
How about a separate table that contains the ids of the previous n inserts? You could add a trigger to delete old ids if the size of the table grows above n. Say..
CREATE TABLE IF NOT EXISTS recent_results
(result_id INTEGER PRIMARY KEY, event_date DATE);
// is DATE a type? I don't know. you get the point
CREATE TRIGGER IF NOT EXISTS optimizer
AFTER INSERT ON recent_results
WHEN (SELECT COUNT(*) FROM recent_results) > N
BEGIN
DELETE FROM recent_results
WHERE result_id = (SELECT result_id
FROM recent_results
WHERE event_date = MIN(event_date));
// or something like that. I have no idea if this will work,
// I just threw it together.
Or you could just create a temporary memory-based table that you populate at app load and keep up to date as you perform transactions during app execution. That way you only pay the steep price once!
Just a few more thoughts for you. Be creative, and remember that you can usually define what you want as a data structure as well as an algorithm. Good luck!

Best way to store time series in Rails

I have a table in my database that stores event totals, something like:
event1_count
event2_count
event3_count
I would like to transition from these simple aggregates to more of a time series, so the user can see on which days these events actually happened (like how Stack Overflow shows daily reputation gains).
Elsewhere in my system I already did this by creating a separate table with one record for each daily value - then, in order to collect a time series you end up with a huge database table and the need to query 10s or 100s of records. It works but I'm not convinced that it's the best way.
What is the best way of storing these individual events along with their dates so I can do a daily plot for any of my users?
When building tables like this, the real key is having effective indexes. Test your queries with the EXAMINE statement or the equivalent in your database of choice.
If you want to build summary tables you can query, build a view that represents the query, or roll the daily results into a new table on a regular schedule. Often summary tables are the best way to go as they are quick to query.
The best way to implement this is to use Redis. If you haven't worked before with Redis I suggest you to start. You will be surprised how fast this can get :). The way I would do such a thing is to use the Hash data structure Redis provides. Just assign every user to his Hash (making a unique key for every user like "user:23:counters"). Inside this Hash you can store a daily timestamp as "05/06/2011" as the field and increment its counter every time an event happens or whatever you want to do with that!
A good start would be this thread. It has a simple, beginner level solution. Time Series Starter. If you are ok with rails models: This is a way it could work. For a sol called "irregular" time series. So this is a event here and there, but not in a regular interval. Like a sensor that sends data when your door is opened.
The other thing, and that is what I was looking for in this thread is regular time series db: Values come at a interval. Say 60/minute aka 1 per second for example a temperature sensor. This all boils down to datasets with "buckets" as you are suspecting right: A time series table gets long, indexes suck at a point etc. Here is one "bucket" approach using postgres arrays that would a be feasible idea.
Its not done as "plug and play" as far as I researched the web.

Can one rely on the auto-incrementing primary key in your database?

In my present Rails application, I am resolving scheduling conflicts by sorting the models by the "created_at" field. However, I realized that when inserting multiple models from a form that allows this, all of the created_at times are exactly the same!
This is more a question of best programming practices: Can your application rely on your ID column in your database to increment greater and greater with each INSERT to get their order of creation? To put it another way, can I sort a group of rows I pull out of my database by their ID column and be assured this is an accurate sort based on creation order? And is this a good practice in my application?
The generated identification numbers will be unique.
Regardless of whether you use Sequences, like in PostgreSQL and Oracle or if you use another mechanism like auto-increment of MySQL.
However, Sequences are most often acquired in bulks of, for example 20 numbers.
So with PostgreSQL you can not determine which field was inserted first. There might even be gaps in the id's of inserted records.
Therefore you shouldn't use a generated id field for a task like that in order to not rely on database implementation details.
Generating a created or updated field during command execution is much better for sorting by creation-, or update-time later on.
For example:
INSERT INTO A (data, created) VALUES (smething, DATE())
UPDATE A SET data=something, updated=DATE()
That depends on your database vendor.
MySQL I believe absolutely orders auto increment keys. SQL Server I don't know for sure that it does or not but I believe that it does.
Where you'll run into problems is with databases that don't support this functionality, most notably Oracle that uses sequences, which are roughly but not absolutely ordered.
An alternative might be to go for created time and then ID.
I believe the answer to your question is yes...if I read between the lines, I think you are concerned that the system may re-use ID's numbers that are 'missing' in the sequence, and therefore if you had used 1,2,3,5,6,7 as ID numbers, in all the implementations I know of, the next ID number will always be 8 (or possibly higher), but I don't know of any DB that would try and figure out that record Id #4 is missing, so attempt to re-use that ID number.
Though I am most familiar with SQL Server, I don't know why any vendor who try and fill the gaps in a sequence - think of the overhead of keeping that list of unused ID's, as opposed to just always keeping track of the last I number used, and adding 1.
I'd say you could safely rely on the next ID assigned number always being higher than the last - not just unique.
Yes the id will be unique and no, you can not and should not rely on it for sorting - it is there to guarantee row uniqueness only. The best approach is, as emktas indicated, to use a separate "updated" or "created" field for just this information.
For setting the creation time, you can just use a default value like this
CREATE TABLE foo (
id INTEGER UNSIGNED AUTO_INCREMENT NOT NULL;
created TIMESTAMP NOT NULL DEFAULT NOW();
updated TIMESTAMP;
PRIMARY KEY(id);
) engine=InnoDB; ## whatever :P
Now, that takes care of creation time. with update time I would suggest an AFTER UPDATE trigger like this one (of course you can do it in a separate query, but the trigger, in my opinion, is a better solution - more transparent):
DELIMITER $$
CREATE TRIGGER foo_a_upd AFTER UPDATE ON foo
FOR EACH ROW BEGIN
SET NEW.updated = NOW();
END;
$$
DELIMITER ;
And that should do it.
EDIT:
Woe is me. Foolishly I've not specified, that this is for mysql, there might be some differences in the function names (namely, 'NOW') and other subtle itty-bitty.
One caveat to EJB's answer:
SQL does not give any guarantee of ordering if you don't specify an order by column. E.g. if you delete some early rows, then insert 'em, the new ones may end up living in the same place in the db the old ones did (albeit with new IDs), and that's what it may use as its default sort.
FWIW, I typically use order by ID as an effective version of order by created_at. It's cheaper in that it doesn't require adding an index to a datetime field (which is bigger and therefore slower than a simple integer primary key index), guaranteed to be different, and I don't really care if a few rows that were added at about the same time sort in some slightly different order.
This is probably DB engine depended. I would check how your DB implements sequences and if there are no documented problems then I would decide to rely on ID.
E.g. Postgresql sequence is OK unless you play with the sequence cache parameters.
There is a possibility that other programmer will manually create or copy records from different DB with wrong ID column. However I would simplify the problem. Do not bother with low probability cases where someone will manually destroy data integrity. You cannot protect against everything.
My advice is to rely on sequence generated IDs and move your project forward.
In theory yes the highest id number is the last created. Remember though that databases do have the ability to temporaily turn off the insert of the autogenerated value , insert some records manaully and then turn it back on. These inserts are no typically used on a production system but can happen occasionally when moving a large chunk of data from another system.

Resources