I am implementing a text classification system using Mahout. I have read stop-words removal and stemming helps to improve accuracy of Text classification. In my case removing stop-words giving better accuracy, but stemming is not helping much. I found 3-5% decrease in accuracy after applying stemmer. I tried with porter stemmer and k-stem but got almost same result in both the cases.
I am using Naive Bayes algorithm for classification.
Any help is greatly appreciated in advance.
First of all, you need to understand why stemming normally improve accuracy. Imagine following sentence in a training set:
He played below-average football in 2013, but was viewed as an ascending player before that and can play guard or center.
and following in a test set:
We’re looking at a number of players, including Mark
First sentence contains number of words referring to sports, including word "player". Second sentence from test set also mentions player, but, oh, it's in plural - "players", not "player" - so for classifier it is a distinct, unrelated variable.
Stemming tries to cut off details like exact form of a word and produce word bases as features for classification. In example above, stemming could shorten both words to "player" (or even "play") and use them as the same feature, thus having more chances to classify second sentence as belonging to "sports" class.
Sometimes, however, these details play important role by themselves. For example, phrase "runs today" may refer to a runner, while "long running" may be about phone battery lifetime. In this case stemming makes classification worse, not better.
What you can do here is to use additional features that can help to distinguish between different meanings of same words/stems. Two popular approaches are n-grams (e.g. bigrams, features made of word pairs instead of individual words) and part-of-speech (POS) tags. You can try any combination of them, e.g. stems + bigrams of stems, or words + bigrams of words, or stems + POS tags, or stems, bigrams and POS tags, etc.
Also, try out other algorithms. E.g. SVM uses very different approach than Naive Bayes, so it can catch things in data that NB ignores.
Related
I have been searching and attempting to implement a word embedding model to predict similarity between words. I have a dataset made up 3,550 company names, the idea is that the user can provide a new word (which would not be in the vocabulary) and calculate the similarity between the new name and existing ones.
During preprocessing I got rid of stop words and punctuation (hyphens, dots, commas, etc). In addition, I applied stemming and separated prefixes with the hope to get more precision. Then words such as BIOCHEMICAL ended up as BIO CHEMIC which is the word divided in two (prefix and stem word)
The average company name length is made up 3 words with the following frequency:
The tokens that are the result of preprocessing are sent to word2vec:
#window: Maximum distance between the current and predicted word within a sentence
#min_count: Ignores all words with total frequency lower than this.
#workers: Use these many worker threads to train the model
#sg: The training algorithm, either CBOW(0) or skip gram(1). Default is 0s
word2vec_model = Word2Vec(prepWords,size=300, window=2, min_count=1, workers=7, sg=1)
After the model included all the words in the vocab , the average sentence vector is calculated for each company name:
df['avg_vector']=df2.apply(lambda row : avg_sentence_vector(row, model=word2vec_model, num_features=300, index2word_set=set(word2vec_model.wv.index2word)).tolist())
Then, the vector is saved for further lookups:
##Saving name and vector values in file
df.to_csv('name-submission-vectors.csv',encoding='utf-8', index=False)
If a new company name is not included in the vocab after preprocessing (removing stop words and punctuation), then I proceed to create the model again and calculate the average sentence vector and save it again.
I have found this model is not working as expected. As an example, calculating the most similar words pet is getting the following results:
ms=word2vec_model.most_similar('pet')
('fastfood', 0.20879755914211273)
('hammer', 0.20450574159622192)
('allur', 0.20118337869644165)
('wright', 0.20001833140850067)
('daili', 0.1990675926208496)
('mgt', 0.1908089816570282)
('mcintosh', 0.18571510910987854)
('autopart', 0.1729743778705597)
('metamorphosi', 0.16965581476688385)
('doak', 0.16890916228294373)
In the dataset, I have words such as paws or petcare, but other words are creating relationships with pet word.
This is the distribution of the nearer words for pet:
On the other hand, when I used the GoogleNews-vectors-negative300.bin.gz, I could not add new words to the vocab, but the similarity between pet and words around was as expected:
ms=word2vec_model.most_similar('pet')
('pets', 0.771199643611908)
('Pet', 0.723974347114563)
('dog', 0.7164785265922546)
('puppy', 0.6972636580467224)
('cat', 0.6891531348228455)
('cats', 0.6719794869422913)
('pooch', 0.6579219102859497)
('Pets', 0.636363685131073)
('animal', 0.6338439583778381)
('dogs', 0.6224827170372009)
This is the distribution of the nearest words:
I would like to get your advice about the following:
Is this dataset appropriate to proceed with this model?
Is the length of the dataset enough to allow word2vec "learn" the relationships between the words?
What can I do to improve the model to make word2vec create relationships of the same type as GoogleNews where for instance word pet is correctly set among similar words?
Is it feasible to implement another alternative such as fasttext considering the nature of the current dataset?
Do you know any public dataset that can be used along with the current dataset to create those relationships?
Thanks
3500 texts (company names) of just ~3 words each is only around 10k total training words, with a much smaller vocabulary of unique words.
That's very, very small for word2vec & related algorithms, which rely on lots of data, and sufficiently-varied data, to train-up useful vector arrangements.
You may be able to squeeze some meaningful training from limited data by using far more training epochs than the default epochs=5, and far smaller vectors than the default size=100. With those sorts of adjustments, you may start to see more meaningful most_similar() results.
But, it's unclear that word2vec, and specifically word2vec in your averaging-of-a-name's-words comparisons, is matched to your end goals.
Word2vec needs lots of data, doesn't look at subword units, and can't say anything about word-tokens not seen during training. An average-of-many-word-vectors can often work as an easy baseline for comparing multiword texts, but might also dilute some word's influence compared to other methods.
Things to consider might include:
Word2vec-related algorithms like FastText that also learn vectors for subword units, and can thus bootstrap not-so-bad guess vectors for words not seen in training. (But, these are also data hungry, and to use on a small dataset you'd again want to reduce vector size, increase epochs, and additionally shrink the number of buckets used for subword learning.)
More sophisticated comparisons of multi-word texts, like "Word Mover's Distance". (That can be quite expensive on longer texts, but for names/titles of just a few words may be practical.)
Finding more data that's compatible with your aims for a stronger model. A larger database of company names might help. If you just want your analysis to understand English words/roots, more generic training texts might work too.
For many purposes, a mere lexicographic comparison - edit distances, count of shared character-n-grams – may be helpful too, though it won't detect all synonyms/semantically-similar words.
Word2vec does not generalize to unseen words.
It does not even work well for wards that are seen but rare. It really depends on having many many examples of word usage. Furthermore a you need enough context left and right, but you only use company names - these are too short. That is likely why your embeddings perform so poorly: too little data and too short texts.
Hence, it is the wrong approach for you. Retraining the model with the new company name is not enough - you still only have one data point. You may as well leave out unseen words, word2vec cannot work better than that even if you retrain.
If you only want to compute similarity between words, probably you don't need to insert new words in your vocabulary.
By eye, I think you can also use FastText without the need to stem the words. It also computes vectors for unknown words.
From FastText FAQ:
One of the key features of fastText word representation is its ability
to produce vectors for any words, even made-up ones. Indeed, fastText
word vectors are built from vectors of substrings of characters
contained in it. This allows to build vectors even for misspelled
words or concatenation of words.
FastText seems to be useful for your purpose.
For your task, you can follow FastText supervised tutorial.
If your corpus proves to be too small, you can build your model starting from availaible pretrained vectors (pretrainedVectors parameter).
My team does a lot of chatbot training, and I'm trying to come up with some tools to improve the quality of our work. In chatbot training, it is really important to train intents with diverse utterances that phrase the same intent in very different ways. Ideally, there would be very little similarity in the syntax of the utterances in the set.
Here's an example for an intent inquiring about medical insurance coverage
Bad set of utterances
Is my daughter covered by insurance?
Is my son covered by medical insurance?
Will my son be covered by insurance?
Decent set of utterances
How can I look up whether we have insurance coverage for the whole family?
Seeking details on eligibility for medical coverage
Is there a document that details who is protected under our medical insurance policy?
I want to be able to take all of the utterances associated to an intent and analyze them for similarity. I would expect my set of bad utterances to have a high similarity score and my set of decent utterances to have a low similarity score.
I've tried playing around with a few doc2vec tutorials, but I feel like I'm missing something. I keep seeing stuff like this:
Train a set of data and then measure the similarity of a new sentence to your set of data
Measure the similarity between two sentences
I need to have an array of sentences and understand how similar they are to each other.
Any advice on achieving this?
Answering some questions:
What makes the bad utterances bad?The utterances themselves are not bad, it is the lack of variety between them. If most of the training had been like the “bad” set, then real user utterances of greater variety will not be recognized correctly.
Are you trying to discover new intents? No, this is for prerelease training, trying to improve the effectiveness of it.
Why do bad utterances have high similarity scores and decent utterances have low similarity scores? This is a hypothesis. I know how varied real user utterances are, and I have found my trainers fall into ruts when training, asking things the same way, and not seeing good accuracy results. Improving the variety in the utterances tends to result in better accuracy.
What will I do with this info? I’ll use it to assess the training quality of an intent, to determine if more training is likely necessary. In the future we might build real time tools as utterances are being added to let trainers know if they’re being too repetitive.
Most applications of text vectors benefit from the vectors capturing the "essential meaning" of a text, **without* regard to variances in word choice.
That is, it's considered a feature, not a flaw, if two completely different wordings with similar meaning have nearly the same vector. (Or, if some similarity-measure indicates they are totally similar.)
For example, to contrive an example similar to yours, consider the two phrasings:
"health coverage for brother"
"male sibling medical insurance"
There's no reuse of words, but the likely intended meaning is the same – so a good text-vectorization for typical purposes would create very similar vectors. And a similarity-measure using those vectors, or otherwise using the words/word-vectors as input, would indicate very high similarity.
But from your clarifying answers, it seems you actually want a more superficial "similarity" measure. You'd like a measure that reveals when certain phrasings show variety/contrast in their wording. (And specifically, you already know form other factors, like how they were hand-crafted, that groups of these phrasings are semantically related.)
What you want this similarity measure to show is actually a behavior that many projects using text-vectors would consider a failure of the vectors. So semantic methods like those in Word2Vec, Paragraph Vectors (aka "Doc2Vec"), etc are likely the wrong tool for your goal.
You could probably do well with a simpler measure based just on the words, or perhaps character-n-grams, of the texts.
For example, for two texts A and B, you could just tally the number of shared words (that appear in both A and B), and divide by the total number of unique words in both A and B, to get a 0.0 to 1.0 "word choice similarity" number.
And, when considering a new text against a set of prior texts, if its average similarity to the prior texts is low, it'd be "good" for your purposes.
Rather than just words, you could also use all n-character substrings ("n-grams") of your texts – which might help better highlight differences in word-forms, or common typos, which may also be useful variances for your purposes.
In general, I'd look at the scikit-learn text-vectorization functionality for ideas:
https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction
I have 4 different categories and I also have around 3000 words which belong to each of these categories. Now if a new sentence comes, I am able to break the sentence into words and get more words related to it. So say for each new sentence I can get 20-30 words generated from the sentence.
Now what is the best way to classify this sentence in above mentioned category? I know bag of words works well.
I also looked at LDA, but it works with documents, where as I have a list of words as a training corpus. In LDA it looks at the position of word in document. So I could not get meaningful results from LDA.
I'm not sure if I fully understand what your question is exactly.
Bag of words works well for some purposes, but in a lot of cases it throws away a lot of potentially useful information (which could be taken from word order, for example).
And assuming that you get a grammatical sentence as input, why not use your sentence as document and still use LDA? The position of a word in your sentence can still be verymeaningful.
There are plenty of classification methods available. Which one is best depens largely on your purpose. If you're neew to this area, this may be interesting to have a look at: https://www.coursera.org/course/ml
Like, Igor, I am also a bit confused regarding your problem. Be it a document or a sentence, the terms will be part of the feature set for categorization, in some form. You can find out the most relevant terms of each category and using this knowledge, do a better classification of the new sentences. For example, if your sentence is as follows-" There is a stray dog near our layout which bites everyone who goes near to it". If you take the useful keywords from this sentence, removing stopwords, they are a few in number ( stray, dog, layout, bites, near ). You can categorize it into a bucket, "animals_issue". If you train your system with a larger set of example, this bag of words model can help. Otherwise, you can go for LDA/ other topic modelling approaches.
Usually one wants to get a feature from a text by using the bag of words approach, counting the words and calculate different measures, for example tf-idf values, like this: How to include words as numerical feature in classification
But my problem is different, I want to extract a feature vector from a single word. I want to know for example that potatoes and french fries are close to each other in the vector space, since they are both made of potatoes. I want to know that milk and cream also are close, hot and warm, stone and hard and so on.
What is this problem called? Can I learn the similarities and features of words by just looking at a large number documents?
I will not make the implementation in English, so I can't use databases.
hmm,feature extraction (e.g. tf-idf) on text data are based on statistics. On the other hand, you are looking for sense (semantics). Therefore no such a method like tf-idef will work for you.
In NLP exists 3 basic levels:
morphological analyses
syntactic analyses
semantic analyses
(higher number represents bigger problems :)). Morphology is known for majority languages. Syntactic analyses is a bigger problem (it deals with things like what is verb, noun in some sentence,...). Semantic analyses has the most challenges, since it deals with meaning which is quite difficult to represent in machines, have many exceptions and are language-specific.
As far as I understand you want to know some relationships between words, this can be done via so-called dependency tree banks, (or just treebank): http://en.wikipedia.org/wiki/Treebank . It is a database/graph of sentences where a word can be considered as a node and relationship as arc. There is good treebank for czech language and for english there will be also some, but for many 'less-covered' languages it can be a problem to find one ...
user1506145,
Here is a simple idea that I have used in the past. Collect a large number of short documents like Wikipedia articles. Do a word count on each document. For the ith document and the jth word let
I = the number of documents,
J = the number of words,
x_ij = the number of times the jth word appears in the ith document, and
y_ij = ln( 1+ x_ij).
Let [U, D, V] = svd(Y) be the singular value decomposition of Y. So Y = U*D*transpose(V)), U is IxI, D is diagonal IxJ, and V is JxJ.
You can use (V_1j, V_2j, V_3j, V_4j) as a feature vector in R^4 for the jth word.
I am surprised the previous answers haven't mentioned word embedding. Word embedding algorithm can produce word vectors for each word a given dataset. These algorithms can nfer word vectors from the context. For instance, by looking at the context of the following sentences we can say that "clever" and "smart" is somehow related. Because the context is almost the same.
He is a clever guy
He is a smart guy
A co-occurrence matrix can be constructed to do this. However, it is too inefficient. A famous technique designed for this purpose is called Word2Vec. It can be studied from the following papers.
https://arxiv.org/pdf/1411.2738.pdf
https://arxiv.org/pdf/1402.3722.pdf
I have been using it for Swedish. It is quite effective in detecting similar words and completely unsupervised.
A package could be find in gensim and tensorflow.
I am doing the text categorization machine learning problem using Naive Bayes. I have each word as a feature. I have been able to implement it and I am getting good accuracy.
Is it possible for me to use tuples of words as features?
For example, if there are two classes, Politics and sports. The word called government might appear in both of them. However, in politics I can have a tuple (government, democracy) whereas in the class sports I can have a tuple (government, sportsman). So, if a new text article comes in which is politics, the probability of the tuple (government, democracy) has more probability than the tuple (government, sportsman).
I am asking this is because by doing this am I violating the independence assumption of the Naive Bayes problem, because I am considering single words as features too.
Also, I am thinking of adding weights to features. For example, a 3-tuple feature will have less weight than a 4-tuple feature.
Theoretically, are these two approaches not changing the independence assumptions on the Naive Bayes classifier? Also, I have not started with the approach I mentioned yet but will this improve the accuracy? I think the accuracy might not improve but the amount of training data required to get the same accuracy would be less.
Even without adding bigrams, real documents already violate the independence assumption. Conditioned on having Obama in a document, President is much more likely to appear. Nonetheless, naive bayes still does a decent job at classification, even if the probability estimates it gives are hopelessly off. So I recommend that you go on and add more complex features to your classifier and see if they improve accuracy.
If you get the same accuracy with less data, that is basically equivalent to getting better accuracy with the same amount of data.
On the other hand, using simpler, more common features works better as you decrease the amount of data. If you try to fit too many parameters to too little data, you tend to overfit badly.
But the bottom line is to try it and see.
No, from a theoretical viewpoint, you are not changing the independence assumption. You are simply creating a modified (or new) sample space. In general, once you start using higher n-grams as events in your sample space, data sparsity becomes a problem. I think using tuples will lead to the same issue. You will probably need more training data, not less. You will probably also have to give a little more thought to the type of smoothing you use. Simple Laplace smoothing may not be ideal.
Most important point, I think, is this: whatever classifier you are using, the features are highly dependent on the domain (and sometimes even the dataset). For example, if you are classifying sentiment of texts based on movie reviews, using only unigrams may seem to be counterintuitive, but they perform better than using only adjectives. On the other hand, for twitter datasets, a combination of unigrams and bigrams were found to be good, but higher n-grams were not useful. Based on such reports (ref. Pang and Lee, Opinion mining and Sentiment Analysis), I think using longer tuples will show similar results, since, after all, tuples of words are simply points in a higher-dimensional space. The basic algorithm behaves the same way.