I am building an application in HTML5 for iPad to upload a picture to a server. When I click an input file element like this:
<input id='fileup' type='file' accept='image/*' name='upf' onchange='abv();'/>
It gives the possibility to either take a picture from the device camera or to upload from existing ones. However, when taking a picture, the resulting image is rotated based on the orientation of the device at the moment the photo is taken. What I want to do is to figure out the orientation of the captured image and try to rotate it on the server-side.
Notice that I do not have access to any iOS tools or frameworks, since this application is totally web-based.
Then, is there any information regarding the orientation of the picture that I can either access on the client or on the server-side, such that I would be able to rotate the images into the proper position? I have heard of EXIF data, but I am unsure on how to access it, and if it would give me the required information.
I am using python on the server-side, but a solution in C/C++ would also be appreciated.
Thanks.
I am using python on the server-side
So you can use jpegtran-cffi Python package that provides the ability to perform EXIF auto-transform:
# jpegtran can transform the image automatically according to the EXIF
# orientation tag
photo = JPEGImage(blob=requests.get("http://example.com/photo.jpg").content)
print photo.exif_orientation # "6" (= 270°)
print photo.width, photo.height # "4320 3240"
corrected = photo.exif_autotransform()
print corrected.exif_orientation # "1" (= "normal")
print corrected.width, corrected.height # "3240 4320"
Note: extracted from the README.
As an alternative there is also a convenient command-line tool called jhead that you can use for the same purpose:
# Remove EXIF orientation
# i.e. rotate the image accordingly and reset the orientation
# flag to 1 (default, i.e. origin = TopLeft)
# WARNING: the image file is overwritten!
# NOTE: it also works with a wildcard: jhead -autorot *.jpg
jhead -autorot myimage.jpg
Related
I'm relatively new to scripting and using application such as Automator. I would like to try create a script which detects when new images are added to a folder, prints them twice to a device (HP Sprocket) by using the "send file to device" option in Bluetooth, and then moves that image to another folder once the print has been sent (in queue) or completed.
I have used automator to create the transfer of the file, however I have no idea how to go about doing the printing aspect of this. Should I be using applescripts in automator? or another program?
Just for clarification regarding this, this is where the option sits when doing it manually.
The reason I am doing it this way and not just through a standard print is because the HP Sprocket doesn't work as a printer on any devices other than mobile, however you are able to send a file to the device this way with it still printing.
Here are some bits of help:
To detect when files arrive in a folder, you need to Google "Applescript folder actions".
I did something similar to what you are trying and used a folder in Dropbox which allows me to print from a smartphone by dropping files into Dropbox.... neat!
I used a POGO printer in my case, here is the bash code with embedded Applescript at the end:
################################################################################
# POGOprint
# Send image supplied as parameter to Polaroid POGO printer using Bluetooth
# File Exchange
#
# Mark Setchell
################################################################################
# User editable parameters - get address by clicking Bluetooth icon at top-right
# of the Mac screen and looking for the POGO
# Install ImageMagick using "homebrew", with:
# brew install imagemagick
pogo_address="00-04-48-13-9f-64"
tmp="/tmp/POGO.jpg"
# Get width and height of image using ImageMagick
read w h < <(convert "$1" -format "%w %h" info: )
if [ $w -gt $h ]; then
# Landscape format - wider than tall
convert "$1" -resize 900x600 $tmp
else
# Portrait format - taller than wide
convert "$1" -resize 600x900 $tmp
fi
osascript<<EOF
with timeout of 60 seconds
tell application "Bluetooth File Exchange"
send file "$tmp" as string to device "$pogo_address"
end tell
end timeout
EOF
Using Octave, I am able to show a image and then plot some red circles over it, as follow:
tux = imread('tux.png');
imshow(tux);
hold on;
plot(100,100,'r','markersize', 10);
plot(150,200,'r','markersize', 10);
The above code display this window:
My question is: How can I save this image as it is being showed inside the window?
Thank you very much!
Pretty simple. Use:
print -djpg image.jpg
print is a command in Octave that allows you to capture what's currently seen in the current figure window. -d specifies what output device you want to write to. There are multiple "devices" you can use to save to file... EPS, PS, TEX, etc. A device can also be an image writer, and so here I chose JPEG. You can choose other valid image formats that are supported by Octave. Take a look at the link I provided above for more details.
After, you just specify what file name you want to save the plot to. In this case, I chose image.jpg.
You can also take a look at saveas. Make sure you get a handle to the current figure first before doing so:
h = gcf;
saveas(h, "image.jpg");
Also... a more point-and-click approach would be to Go to File -> Save As in the figure that your image is displayed in :)
You can use print to save your plot to a file:
print (FILENAME, OPTIONS) // for the current figure
print (H, FILENAME, OPTIONS) // for the figure handle H
and also take a look to saveas
saveas (H, FILENAME)
I would like to know can we convert a image into base64 and save it in a database and access it in the views.
I have searched google and stackoverflow, all of them starts from middle like encoding or displaying the image.
I need to know how can we convert a image url/path(lets say i store image inside my app and its url stored in column)
How to encode it as base64 before saving(should we convert to base64 first and save in db?).
How to display it in the views
You can split this task to three or four steps:
getting the image
encoding to base64
storing it in database (optionaly)
display it in views
Getting the image
From Assets pipeline
If you are using Rails asset pipeline for that, you can use Rails.application.assets hash to get to image: Rails.application.assets['image_name.png'].to_s will give you the content of image_name.png image.
from file - local or by url
Here is the question about that on StackOverflow.
encode
Base64 Ruby module docs tells how to use Base64 encoding in Ruby:
Base64.strict_encode64(your_content_here)
NOTE: in this case strict_encode64 is preferrable over just encode64 because it doesn't add any newlines. (credit goes to Sergey Mell for pointing that out)
From docs:
encode64 - ... Line feeds are added to every 60 encoded characters.
strict_encode64 - ... No line feeds are added.
Store it in database (optionaly)
I suggest you to create a separate ActiveRecord model for that, with field of type text to keep base64 representation of image.
Display it in views
You can provide data-url to src attribute of img tag, so, the browser will decode image from base64 and display it just like regular image:
<img src="_BASE64_HERE"/>
Don't forget to change image format to whatever format you are using in data:image/png section.
UPDATE (2018-08-22): I have tried to use urlsafe_encode64, as suggested by Xornand, and for me it produces the output that is not recognized as image by the browser.
Tried in both Firefox 61.0.2 and Chromium 68.0.3440.106.
For the sake of reference and to enable experimentation, here are results themselves.
Image used as "original" (resized it to be even more small to reduce the size of base64 output):
encode64:
/9j/4AAQSkZJRgABAQEAYABhAAD/4QBARXhpZgAASUkqAAgAAAABAGmHBAAB
AAAAGgAAAAAAAAACAAKgCQABAAAAZAAAAAOgCQABAAAAfwAAAAAAAAD/2wBD
AAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwc
KDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy
MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/
/gA0T3B0aW1pemVkIGJ5IEpQRUdtaW5pIDMuMTQuMTQuNzI2NzA4NjAgMHhm
ZjIzZjM3OQD/wAARCAB/AGQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAA
AAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIh
MUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKT
lJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi
4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQF
BgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMi
MoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJma
oqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq
8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDyNj85+tBbFEvE7j0Y/wA6YxrA2HIx
Jqwp4rS0LwvfayyspWKFj99z1+grvrf4TCSEMLqVzjqu3+VTKSRUYtnmQrS0
WTy9Tib0DfyNdNq/wz1WwUvbAyp6MMH/AArl7eKaw1JUuImjdcgq4x2NS2mt
CopqSuZkLf6Vdn/ZevR/ADgaHAv/AE9E/qteaQn9/de6NXoHw/c/YLVSetye
PxFKrsXT/wAzoPFigaovH/LIfzNYHet/xW2dVHtGP61gfxVqcKLMNXojjFUI
zVyI0AaSN8tFRKw2iigDxi9+S8mX0c1b0mxa6nDNGXUnCr/eNPNgbu5aduIz
g4HU1oaZdvp16JBErIo2hCe1M3SO20uKGwgVZdW0+G9Yjy4XfcR7EjgfSuv8
M6pqc91LZzWitLD1aORQCOxGOoI9K8t1W90vU9k0cM1vMgySuOvpVrwvrM1l
qguXnYkptLE9QOgqJQW5tGfQ92Sa4+YXMIEZ/vNkiud8Q+GdM1C4U3EAKn7r
rwy/jV3Tdfi1G1yrBiv3sH2qw7xOgjBJ5PfNc8tNUax8zx7xb8OJtAt5tU09
3uLIofMB+9HnufUe9R+BDstrTP8Az8/4V7KGla3aEhJIWUgqwzkHqD7Vxh0z
StHuGitrRYvn3hdxIBP16UOfMrMpQszO8TtnVT7ItYWfmrvP7PttQgDSJGc8
cZyKzbvwaWQvZTZcfwMev41pGtF7nJLDSitNTnY2xVqFqptFLbzNDMjJIhwV
YYIqaNua2Odmkr8UVCrfLRQI8fkuZAkTq7KSuCQfSrumTmdzE7Ev1BJ5PtVc
2h8pR6E01LaRHDoSGByCO1O6Ntbm6I8KSfujnJNLp5Ny2YSMZPzH/CobK9md
TBOvDcbgOPxrS0q3FrMzMg2hSMdATSRdzodD1M6ULhgcuy8Z9feuz8K6m7Rs
8nzDOcV5vZ2sjYeT+Lk5712emSER4XACjtUTjc0gzupbw+SZVXI6kKOgrh9V
kj1LV5o7dlMipn3Fbdtq4is5uN+xGZlxyR3rza21Rv7QkugzbgeOe1Z8hpzn
daTPIlqI5wWKjhgBW7pV1NNOqgDHGD2+hFcPp+tQFCJxt3Hsa6fTr2OJCImK
c8NwSKiUS1I1fFehW+sWMl1arjULZMsg6yIO2PUdq82j4Nes6JdFplaQDzF4
LDoR/hXA+KdM/szxDcIi4hlPmx49D2/A5Fa05aWZx14Wd0ZyniimA8UVqYHI
f2YxUAKT9BT10iU/8smrtFt+igKDj0xUgszj+EAjpnvWWp1XRx8eiTHny8fU
1ZXSJY0JbBXqQCa61bMocMB+dP8AsIOFwSPXrRewHPQSIqtnAA/StbSbyJWd
JABjpmsnVITp95sK5VxxVCZ7hIfNAIReorQSN241rZp14DgE5xjqPpXG2MFz
OGkWKVgxyQqkk0GZ76QDkAnkDvWnYtJB8ylyxGAFOD/Opehe4W1o8TgzFkXI
3BgRj2Nd3oFpaRyrKLndkgDL8EHsa4GUzzXn7wSIrDOWFamlXX2Z1UuXj6Z6
YOf8DWctTRHpVsklndgRO5CneoI6gfeXjrxn8q534mzXE8lk9kkxePdv8sEg
A4xnH0NaFnrCSTRqXDsjI69iCDj/AB/OrmmXMRu78yuMRuEXP4nH6ipS1CTS
VzyIavfLwWGR6rRXsk2q6akhDFWPrRV6kc0exzYt125bJ5x171ZjRMBgBn37
f54pflI+RgWxywPQn61Irp8rE9T9AB/XtTuZFTUL2PT41eU5JbCr/WqTa7HK
h+zwOHI6ucD9OtXdW0watbgCURyq2UbHHTvzWNB4ZvlYia6iSNc5cAnFVFxt
qGpl3yfanNxPK3m5zurIvbtlQxlgQRxiu1j0S0Q4Y/aD3yeled6skkGry26c
DzMADsKaak9B7Ghp8IRN38Zq4kRwcdR2FV7dvL24BNaMO1U8xjggfnQ0NMdF
H5u1pZgoTkD+lSGzDMyxyDAP3QOTVAk4AUkY5GBUwvXRspuLduO/+FQ0aJmi
pW3uLeRWAYdQO/HWqUurEu7hyGdiSB64qPVLosgdk2yDAB/z7YrC8w4OR9DT
SIm+hpSamxcnOfq1FZhznjB+uKKqxlc7mbW4wxUEB3PY9PWs648RyqC0UmRj
GCDz9M1z7Ssw6E+h/wDr0EyDCuyKTwBn/wCtT5A5i/J4mvy52yMoI5Kt/wDr
qnJ4jvSmDO6jOcfhVSQBztMnA7VnzWzgMVOfenyhcsy6nqFyCyzOV6fexVBp
5klRnVt3c9ah8+WDCyLj+tWYbxfNUkgnPemlYNzctb1EjVpGwBST6ukjbUbC
9u1Vbm5glRfkAJ61HDFaMwWWIbCeqnBFLQpXNGOZnXhjnHQ1t2WlyahbkrKq
Mv8AfbFQWekaWsSMNQuMH+BcEj8xXQ28XhuBQLiW6fI5Es23H4Lis5M1Rzl/
avCfIlGHBznOQfpWFMJY3MYHOevtXWavf6NLtis4eQNibXJOe3Wsz7EJYVJ+
WTJ4Y8/lTiRM5vzH7LkfQ0VsGylPKqCP9oYNFWZ2LqaRMedwQcA5GBnPT+dT
x+G55QjuoUYJyT64/wDr126m1FuXWDdEyB2O3qehz9MdqmSKBAxODGg4DKRk
k5+o/Gq5hWOCl8MOoARCcn7w7+1V5fDtwgYlDkLnaRyRz/8AW/OvRzCm5I5F
xtIXDAnaep5/EYqZbeP7SGLFcIV5XIwecE9e4HXHFJTHynlf/CO3kilhbrIh
74yaiTwZNMob7MQu4/cznOcYwP5V69BaLIXO5d5GMrk4JPcdccgjJ4H51KsE
ciufOWNVj+Vwo477h+J7envRzhynkcHw91K4d/LMsSocev6fiK04fhlqu8Aa
hApyAQ69M9Mnp+HuK9KmDKy+RC+TglyflHJwQfX6/wD16mgikmMZSaJdoJYk
gsWHGMgf/XqHJlKKPOovhnqzXBR9aiUA4yik8YznH4VswfCiwkPmXWq3kxUE
lUCqT6DGPr+Vd5GrWrKIwXUqxycFwccf1/Sk3MUiXa6MxCsfKJUYIHfvz19v
yV2By8XgvTLBFitLWJSyk72OW47kfhWTc6TdW7yqU/dISCSpPy8dwTnHNegv
GoAizH5oAJBXIkx6jt25z/KmSxGUqhQLGwJYseoBHyj06nii4Hmi2CwqEMg+
uDz+VFehrpNm67sbc9uf6Yopgc2LlYrUSRmQxbifkB6AjBGMce3epLaJkYzf
vGMq/IrEkD2OO+fTPaq9vP5ixIYkMkyEyehVeP6irULLGsZLO4UGRUXAbAA6
9jyfXvVEk6P587xzLtTftUq3PbB9c85okCLbkvviQkBGwxb1HqfQ/nxUT2zz
xqY3O+QCRMSbQo/75PNKpULDtDP5rELliAcj3z2J/OkMekUtvK0cYRkEahGV
dmck9cn0AOetSLd7IxNK25WRdqqBg5ByTnjoCTUkJkkgl+0IglRsAZ47ZGR6
f0qAXm+KGJCFIUAEOxYDjuVPP40ASIjGTz4RDJLLj5mUAEj7v69xU1tciV18
9CSSzHBGBjscY9/z7GkDTm5t5ZZFbBMYC9/XnjuKhUyyWsaxIsJRmXaVVgMk
jHoec+nA96Vh3L3kjc0gmQdAXTGRjv3HrxxxmnXELXksZlOYo1Mu5xtKk579
CMDseuKy7Uu1vb/ZFZImZm25AJHX6etWiyNdC3mQqzyDYoY4Kjk9OnBzz60h
lkyxzweXMpmGMBk3bDkAgkg9MVdF5Daw5TAUL/q26qOg69ecDnFUCUhLkRvJ
wzZUj5SBgcHHBANKpeUCcp5kY3AggHIHPTgYoAtOZWCGWxt7klQVkZl5Htx0
opvn2CRxLDL5ShB8ihgB+GKKBH//2Q==
strict_encode64:
/9j/4AAQSkZJRgABAQEAYABhAAD/4QBARXhpZgAASUkqAAgAAAABAGmHBAABAAAAGgAAAAAAAAACAAKgCQABAAAAZAAAAAOgCQABAAAAfwAAAAAAAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL//gA0T3B0aW1pemVkIGJ5IEpQRUdtaW5pIDMuMTQuMTQuNzI2NzA4NjAgMHhmZjIzZjM3OQD/wAARCAB/AGQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDyNj85+tBbFEvE7j0Y/wA6YxrA2HIxJqwp4rS0LwvfayyspWKFj99z1+grvrf4TCSEMLqVzjqu3+VTKSRUYtnmQrS0WTy9Tib0DfyNdNq/wz1WwUvbAyp6MMH/AArl7eKaw1JUuImjdcgq4x2NS2mtCopqSuZkLf6Vdn/ZevR/ADgaHAv/AE9E/qteaQn9/de6NXoHw/c/YLVSetyePxFKrsXT/wAzoPFigaovH/LIfzNYHet/xW2dVHtGP61gfxVqcKLMNXojjFUIzVyI0AaSN8tFRKw2iigDxi9+S8mX0c1b0mxa6nDNGXUnCr/eNPNgbu5aduIzg4HU1oaZdvp16JBErIo2hCe1M3SO20uKGwgVZdW0+G9Yjy4XfcR7EjgfSuv8M6pqc91LZzWitLD1aORQCOxGOoI9K8t1W90vU9k0cM1vMgySuOvpVrwvrM1lqguXnYkptLE9QOgqJQW5tGfQ92Sa4+YXMIEZ/vNkiud8Q+GdM1C4U3EAKn7rrwy/jV3Tdfi1G1yrBiv3sH2qw7xOgjBJ5PfNc8tNUax8zx7xb8OJtAt5tU093uLIofMB+9HnufUe9R+BDstrTP8Az8/4V7KGla3aEhJIWUgqwzkHqD7Vxh0zStHuGitrRYvn3hdxIBP16UOfMrMpQszO8TtnVT7ItYWfmrvP7PttQgDSJGc8cZyKzbvwaWQvZTZcfwMev41pGtF7nJLDSitNTnY2xVqFqptFLbzNDMjJIhwVYYIqaNua2Odmkr8UVCrfLRQI8fkuZAkTq7KSuCQfSrumTmdzE7Ev1BJ5PtVc2h8pR6E01LaRHDoSGByCO1O6Ntbm6I8KSfujnJNLp5Ny2YSMZPzH/CobK9mdTBOvDcbgOPxrS0q3FrMzMg2hSMdATSRdzodD1M6ULhgcuy8Z9feuz8K6m7Rs8nzDOcV5vZ2sjYeT+Lk5712emSER4XACjtUTjc0gzupbw+SZVXI6kKOgrh9Vkj1LV5o7dlMipn3Fbdtq4is5uN+xGZlxyR3rza21Rv7QkugzbgeOe1Z8hpzndaTPIlqI5wWKjhgBW7pV1NNOqgDHGD2+hFcPp+tQFCJxt3Hsa6fTr2OJCImKc8NwSKiUS1I1fFehW+sWMl1arjULZMsg6yIO2PUdq82j4Nes6JdFplaQDzF4LDoR/hXA+KdM/szxDcIi4hlPmx49D2/A5Fa05aWZx14Wd0ZyniimA8UVqYHIf2YxUAKT9BT10iU/8smrtFt+igKDj0xUgszj+EAjpnvWWp1XRx8eiTHny8fU1ZXSJY0JbBXqQCa61bMocMB+dP8AsIOFwSPXrRewHPQSIqtnAA/StbSbyJWdJABjpmsnVITp95sK5VxxVCZ7hIfNAIReorQSN241rZp14DgE5xjqPpXG2MFzOGkWKVgxyQqkk0GZ76QDkAnkDvWnYtJB8ylyxGAFOD/Opehe4W1o8TgzFkXI3BgRj2Nd3oFpaRyrKLndkgDL8EHsa4GUzzXn7wSIrDOWFamlXX2Z1UuXj6Z6YOf8DWctTRHpVsklndgRO5CneoI6gfeXjrxn8q534mzXE8lk9kkxePdv8sEgA4xnH0NaFnrCSTRqXDsjI69iCDj/AB/OrmmXMRu78yuMRuEXP4nH6ipS1CTSVzyIavfLwWGR6rRXsk2q6akhDFWPrRV6kc0exzYt125bJ5x171ZjRMBgBn37f54pflI+RgWxywPQn61Irp8rE9T9AB/XtTuZFTUL2PT41eU5JbCr/WqTa7HKh+zwOHI6ucD9OtXdW0watbgCURyq2UbHHTvzWNB4ZvlYia6iSNc5cAnFVFxtqGpl3yfanNxPK3m5zurIvbtlQxlgQRxiu1j0S0Q4Y/aD3yeled6skkGry26cDzMADsKaak9B7Ghp8IRN38Zq4kRwcdR2FV7dvL24BNaMO1U8xjggfnQ0NMdFH5u1pZgoTkD+lSGzDMyxyDAP3QOTVAk4AUkY5GBUwvXRspuLduO/+FQ0aJmipW3uLeRWAYdQO/HWqUurEu7hyGdiSB64qPVLosgdk2yDAB/z7YrC8w4OR9DTSIm+hpSamxcnOfq1FZhznjB+uKKqxlc7mbW4wxUEB3PY9PWs648RyqC0UmRjGCDz9M1z7Ssw6E+h/wDr0EyDCuyKTwBn/wCtT5A5i/J4mvy52yMoI5Kt/wDrqnJ4jvSmDO6jOcfhVSQBztMnA7VnzWzgMVOfenyhcsy6nqFyCyzOV6fexVBp5klRnVt3c9ah8+WDCyLj+tWYbxfNUkgnPemlYNzctb1EjVpGwBST6ukjbUbC9u1Vbm5glRfkAJ61HDFaMwWWIbCeqnBFLQpXNGOZnXhjnHQ1t2WlyahbkrKqMv8AfbFQWekaWsSMNQuMH+BcEj8xXQ28XhuBQLiW6fI5Es23H4Lis5M1Rzl/avCfIlGHBznOQfpWFMJY3MYHOevtXWavf6NLtis4eQNibXJOe3Wsz7EJYVJ+WTJ4Y8/lTiRM5vzH7LkfQ0VsGylPKqCP9oYNFWZ2LqaRMedwQcA5GBnPT+dTx+G55QjuoUYJyT64/wDr126m1FuXWDdEyB2O3qehz9MdqmSKBAxODGg4DKRkk5+o/Gq5hWOCl8MOoARCcn7w7+1V5fDtwgYlDkLnaRyRz/8AW/OvRzCm5I5FxtIXDAnaep5/EYqZbeP7SGLFcIV5XIwecE9e4HXHFJTHynlf/CO3kilhbrIh74yaiTwZNMob7MQu4/cznOcYwP5V69BaLIXO5d5GMrk4JPcdccgjJ4H51KsEciufOWNVj+Vwo477h+J7envRzhynkcHw91K4d/LMsSocev6fiK04fhlqu8AahApyAQ69M9Mnp+HuK9KmDKy+RC+TglyflHJwQfX6/wD16mgikmMZSaJdoJYkgsWHGMgf/XqHJlKKPOovhnqzXBR9aiUA4yik8YznH4VswfCiwkPmXWq3kxUElUCqT6DGPr+Vd5GrWrKIwXUqxycFwccf1/Sk3MUiXa6MxCsfKJUYIHfvz19vyV2By8XgvTLBFitLWJSyk72OW47kfhWTc6TdW7yqU/dISCSpPy8dwTnHNegvGoAizH5oAJBXIkx6jt25z/KmSxGUqhQLGwJYseoBHyj06nii4Hmi2CwqEMg+uDz+VFehrpNm67sbc9uf6Yopgc2LlYrUSRmQxbifkB6AjBGMce3epLaJkYzfvGMq/IrEkD2OO+fTPaq9vP5ixIYkMkyEyehVeP6irULLGsZLO4UGRUXAbAA69jyfXvVEk6P587xzLtTftUq3PbB9c85okCLbkvviQkBGwxb1HqfQ/nxUT2zzxqY3O+QCRMSbQo/75PNKpULDtDP5rELliAcj3z2J/OkMekUtvK0cYRkEahGVdmck9cn0AOetSLd7IxNK25WRdqqBg5ByTnjoCTUkJkkgl+0IglRsAZ47ZGR6f0qAXm+KGJCFIUAEOxYDjuVPP40ASIjGTz4RDJLLj5mUAEj7v69xU1tciV189CSSzHBGBjscY9/z7GkDTm5t5ZZFbBMYC9/XnjuKhUyyWsaxIsJRmXaVVgMkjHoec+nA96Vh3L3kjc0gmQdAXTGRjv3HrxxxmnXELXksZlOYo1Mu5xtKk579CMDseuKy7Uu1vb/ZFZImZm25AJHX6etWiyNdC3mQqzyDYoY4Kjk9OnBzz60hlkyxzweXMpmGMBk3bDkAgkg9MVdF5Daw5TAUL/q26qOg69ecDnFUCUhLkRvJwzZUj5SBgcHHBANKpeUCcp5kY3AggHIHPTgYoAtOZWCGWxt7klQVkZl5Htx0opvn2CRxLDL5ShB8ihgB+GKKBH//2Q==
urlsafe_encode64:
_9j_4AAQSkZJRgABAQEAYABhAAD_4QBARXhpZgAASUkqAAgAAAABAGmHBAABAAAAGgAAAAAAAAACAAKgCQABAAAAZAAAAAOgCQABAAAAfwAAAAAAAAD_2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL_2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL__gA0T3B0aW1pemVkIGJ5IEpQRUdtaW5pIDMuMTQuMTQuNzI2NzA4NjAgMHhmZjIzZjM3OQD_wAARCAB_AGQDASIAAhEBAxEB_8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL_8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4-Tl5ufo6erx8vP09fb3-Pn6_8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL_8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3-Pn6_9oADAMBAAIRAxEAPwDyNj85-tBbFEvE7j0Y_wA6YxrA2HIxJqwp4rS0LwvfayyspWKFj99z1-grvrf4TCSEMLqVzjqu3-VTKSRUYtnmQrS0WTy9Tib0DfyNdNq_wz1WwUvbAyp6MMH_AArl7eKaw1JUuImjdcgq4x2NS2mtCopqSuZkLf6Vdn_ZevR_ADgaHAv_AE9E_qteaQn9_de6NXoHw_c_YLVSetyePxFKrsXT_wAzoPFigaovH_LIfzNYHet_xW2dVHtGP61gfxVqcKLMNXojjFUIzVyI0AaSN8tFRKw2iigDxi9-S8mX0c1b0mxa6nDNGXUnCr_eNPNgbu5aduIzg4HU1oaZdvp16JBErIo2hCe1M3SO20uKGwgVZdW0-G9Yjy4XfcR7EjgfSuv8M6pqc91LZzWitLD1aORQCOxGOoI9K8t1W90vU9k0cM1vMgySuOvpVrwvrM1lqguXnYkptLE9QOgqJQW5tGfQ92Sa4-YXMIEZ_vNkiud8Q-GdM1C4U3EAKn7rrwy_jV3Tdfi1G1yrBiv3sH2qw7xOgjBJ5PfNc8tNUax8zx7xb8OJtAt5tU093uLIofMB-9HnufUe9R-BDstrTP8Az8_4V7KGla3aEhJIWUgqwzkHqD7Vxh0zStHuGitrRYvn3hdxIBP16UOfMrMpQszO8TtnVT7ItYWfmrvP7PttQgDSJGc8cZyKzbvwaWQvZTZcfwMev41pGtF7nJLDSitNTnY2xVqFqptFLbzNDMjJIhwVYYIqaNua2Odmkr8UVCrfLRQI8fkuZAkTq7KSuCQfSrumTmdzE7Ev1BJ5PtVc2h8pR6E01LaRHDoSGByCO1O6Ntbm6I8KSfujnJNLp5Ny2YSMZPzH_CobK9mdTBOvDcbgOPxrS0q3FrMzMg2hSMdATSRdzodD1M6ULhgcuy8Z9feuz8K6m7Rs8nzDOcV5vZ2sjYeT-Lk5712emSER4XACjtUTjc0gzupbw-SZVXI6kKOgrh9Vkj1LV5o7dlMipn3Fbdtq4is5uN-xGZlxyR3rza21Rv7QkugzbgeOe1Z8hpzndaTPIlqI5wWKjhgBW7pV1NNOqgDHGD2-hFcPp-tQFCJxt3Hsa6fTr2OJCImKc8NwSKiUS1I1fFehW-sWMl1arjULZMsg6yIO2PUdq82j4Nes6JdFplaQDzF4LDoR_hXA-KdM_szxDcIi4hlPmx49D2_A5Fa05aWZx14Wd0ZyniimA8UVqYHIf2YxUAKT9BT10iU_8smrtFt-igKDj0xUgszj-EAjpnvWWp1XRx8eiTHny8fU1ZXSJY0JbBXqQCa61bMocMB-dP8AsIOFwSPXrRewHPQSIqtnAA_StbSbyJWdJABjpmsnVITp95sK5VxxVCZ7hIfNAIReorQSN241rZp14DgE5xjqPpXG2MFzOGkWKVgxyQqkk0GZ76QDkAnkDvWnYtJB8ylyxGAFOD_Opehe4W1o8TgzFkXI3BgRj2Nd3oFpaRyrKLndkgDL8EHsa4GUzzXn7wSIrDOWFamlXX2Z1UuXj6Z6YOf8DWctTRHpVsklndgRO5CneoI6gfeXjrxn8q534mzXE8lk9kkxePdv8sEgA4xnH0NaFnrCSTRqXDsjI69iCDj_AB_OrmmXMRu78yuMRuEXP4nH6ipS1CTSVzyIavfLwWGR6rRXsk2q6akhDFWPrRV6kc0exzYt125bJ5x171ZjRMBgBn37f54pflI-RgWxywPQn61Irp8rE9T9AB_XtTuZFTUL2PT41eU5JbCr_WqTa7HKh-zwOHI6ucD9OtXdW0watbgCURyq2UbHHTvzWNB4ZvlYia6iSNc5cAnFVFxtqGpl3yfanNxPK3m5zurIvbtlQxlgQRxiu1j0S0Q4Y_aD3yeled6skkGry26cDzMADsKaak9B7Ghp8IRN38Zq4kRwcdR2FV7dvL24BNaMO1U8xjggfnQ0NMdFH5u1pZgoTkD-lSGzDMyxyDAP3QOTVAk4AUkY5GBUwvXRspuLduO_-FQ0aJmipW3uLeRWAYdQO_HWqUurEu7hyGdiSB64qPVLosgdk2yDAB_z7YrC8w4OR9DTSIm-hpSamxcnOfq1FZhznjB-uKKqxlc7mbW4wxUEB3PY9PWs648RyqC0UmRjGCDz9M1z7Ssw6E-h_wDr0EyDCuyKTwBn_wCtT5A5i_J4mvy52yMoI5Kt_wDrqnJ4jvSmDO6jOcfhVSQBztMnA7VnzWzgMVOfenyhcsy6nqFyCyzOV6fexVBp5klRnVt3c9ah8-WDCyLj-tWYbxfNUkgnPemlYNzctb1EjVpGwBST6ukjbUbC9u1Vbm5glRfkAJ61HDFaMwWWIbCeqnBFLQpXNGOZnXhjnHQ1t2WlyahbkrKqMv8AfbFQWekaWsSMNQuMH-BcEj8xXQ28XhuBQLiW6fI5Es23H4Lis5M1Rzl_avCfIlGHBznOQfpWFMJY3MYHOevtXWavf6NLtis4eQNibXJOe3Wsz7EJYVJ-WTJ4Y8_lTiRM5vzH7LkfQ0VsGylPKqCP9oYNFWZ2LqaRMedwQcA5GBnPT-dTx-G55QjuoUYJyT64_wDr126m1FuXWDdEyB2O3qehz9MdqmSKBAxODGg4DKRkk5-o_Gq5hWOCl8MOoARCcn7w7-1V5fDtwgYlDkLnaRyRz_8AW_OvRzCm5I5FxtIXDAnaep5_EYqZbeP7SGLFcIV5XIwecE9e4HXHFJTHynlf_CO3kilhbrIh74yaiTwZNMob7MQu4_cznOcYwP5V69BaLIXO5d5GMrk4JPcdccgjJ4H51KsEciufOWNVj-Vwo477h-J7envRzhynkcHw91K4d_LMsSocev6fiK04fhlqu8AahApyAQ69M9Mnp-HuK9KmDKy-RC-TglyflHJwQfX6_wD16mgikmMZSaJdoJYkgsWHGMgf_XqHJlKKPOovhnqzXBR9aiUA4yik8YznH4VswfCiwkPmXWq3kxUElUCqT6DGPr-Vd5GrWrKIwXUqxycFwccf1_Sk3MUiXa6MxCsfKJUYIHfvz19vyV2By8XgvTLBFitLWJSyk72OW47kfhWTc6TdW7yqU_dISCSpPy8dwTnHNegvGoAizH5oAJBXIkx6jt25z_KmSxGUqhQLGwJYseoBHyj06nii4Hmi2CwqEMg-uDz-VFehrpNm67sbc9uf6Yopgc2LlYrUSRmQxbifkB6AjBGMce3epLaJkYzfvGMq_IrEkD2OO-fTPaq9vP5ixIYkMkyEyehVeP6irULLGsZLO4UGRUXAbAA69jyfXvVEk6P587xzLtTftUq3PbB9c85okCLbkvviQkBGwxb1HqfQ_nxUT2zzxqY3O-QCRMSbQo_75PNKpULDtDP5rELliAcj3z2J_OkMekUtvK0cYRkEahGVdmck9cn0AOetSLd7IxNK25WRdqqBg5ByTnjoCTUkJkkgl-0IglRsAZ47ZGR6f0qAXm-KGJCFIUAEOxYDjuVPP40ASIjGTz4RDJLLj5mUAEj7v69xU1tciV189CSSzHBGBjscY9_z7GkDTm5t5ZZFbBMYC9_XnjuKhUyyWsaxIsJRmXaVVgMkjHoec-nA96Vh3L3kjc0gmQdAXTGRjv3HrxxxmnXELXksZlOYo1Mu5xtKk579CMDseuKy7Uu1vb_ZFZImZm25AJHX6etWiyNdC3mQqzyDYoY4Kjk9OnBzz60hlkyxzweXMpmGMBk3bDkAgkg9MVdF5Daw5TAUL_q26qOg69ecDnFUCUhLkRvJwzZUj5SBgcHHBANKpeUCcp5kY3AggHIHPTgYoAtOZWCGWxt7klQVkZl5Htx0opvn2CRxLDL5ShB8ihgB-GKKBH__2Q==
I'm a newbie in python-fu, (my second day), so my question may seem naive: I'd like to select a rectangular portion from "r400r.png", rotate it 90 degrees, and save my selection in "r400ra.png".
So far, I tried something on these lines:
for fv in range(400,401):
fn='r%sr.png' % fv
img=pdb.gimp_file_load('/path/'+fn,fn)
drw=pdb.gimp_image_get_active_layer(img)
img1=pdb.gimp_image_new(1024,1568,0)
lyr=pdb.gimp_layer_new(img1,1024,1568,0,'ly1',0,0)
pdb.gimp_rect_select(img,10,200,1422,1024,2,0,0)
drw=pdb.gimp_rotate(drw,0,1.570796327)
pdb.script_fu_selection_to_image(img1,drw)
f0=fn[:5]+'a'+fn[5:]
pdb.gimp_file_save(drw,'/path/'+f0,f0)
The "lyr" layer is there because my understanding is that it is a must, although it's not clear to me why. The "for" loop eventually should bulk process a bunch of files; for testing it is restricted to one file only. I get an error where I try o execute "script_fu_selection_to_image".
Can you point me, please, in the right direction?
Thanks,
SxN
The PDB calls to do that are better in this order:
# import your image:
img=pdb.gimp_file_load('/path/'+fn,fn)
#make the selection
pdb.gimp_rect_select(img,10,200,1422,1024,2,0,0)
# copy
pdb.gimp_edit_copy(img.layers[0])
# (no need to "get_active_layer" - if
# your image is a flat PNG or JPG, it only has one layer,
# which is accessible as img.layers[0])
# create a new image from the copied area:
new_img = pdb.gimp_paste_as_new()
#rotate the newly created image:
pdb.gimp_image_rotate(new_img, ...)
#export the resulting image:
pdb.gimp_file_save(new_img, ...)
#delete the loaded image and the created image:
# (as the objects being destroyed on the Python side
# do not erase then from the GIMP app, where they
# stay consuming memory)
pdb.gimp_image_delete(new_img)
pdb.gimp_image_delete(img)
I have written a program that relies on Magick++ simply for importing and exporting of a wide variety of image formats. It uses Image.getPixels() to get a PixelPacket, does a lot of matrix transformations, then calls Image.syncPixels() before writing a new image. The general approach is the same as the example shown in Magick++'s documentation. More or less, the relevant code is:
Magick::Image image("image01.bmp");
image.modifyImage();
Magick::PixelPacket *imagePixels = image.getPixels(0, 0, 10, 10);
// Matrix manipulation occurs here.
// All actual changes to the PixelPacket direct changes to pixels like so:
imagePixels[i].red = 4; // or any other integer
// finally, after matrix manipulation is done
image.syncPixels();
image.write("image01_transformed.bmp");
When I run the above code, the new image file ("image01_transformed.bmp" in this example) ends up being the same as the original. However, if I write it to a different format, such as "image01_transformed.ppm", I get the correct result: a modified image. I assume this is due to a cached version of the format-encoded image, and that Magick++ is for some reason not aware that the image is actually changed and therefore the cache is out of date. I tested this idea by adding image.blur(1.0, 0.1); immediately before image.syncPixels();, and forcing this inconsequential change did indeed result in the correct result for same-format images.
Is there a way to force Magick++ to realize that the cache is out-of-date? Am I using getPixels() and syncPixels() incorrectly in the first place? Thanks!