2d images to 3d(reconstruction) - opencv

I need your help and advice. The question consists of the following items: there are pictures from a chamber that stands in a room in the strictly fixed place(a chamber turns about the axis) . How to combine all these pictures in one so that there was an effect as though we see it with the eyes? There are all pictures of foreshortening (left, right, top, bottom and other foreshortening) of room from one point. I think that I need to use 3d calibration and reconstructionin emgu(opencv). Your help and advice are needed. And also some example of using. Maybe someone has already faced such problem. I’ll be grateful for your help.

There are various methods for 2D to 3D reconstruction, most commonly used are
Stereography (This method requires two camera placed at some offset)
Laser Projection based such as Kinect or Lidar or line laser based.
SFM (structure from motion).
Taking all shots from one point wont give you any 3D information, since there need to have some parallex to determine the difference in depth(unless you are using laser projection).
it is better if you selfstudy relevent topics first before asking questions on the forum, to show other that you really did your part.

Related

how to interact c program with 3d model?

Since for a while, I have been really interested in Image processing especially in VFX. After I watched several movie such as Rise of the Planet of the Ape, I have been trying to replace the face of actor by 3d model without the special feature points have to marked on the face.
As you can see in the second picture, I can get the point on my face.
I wish to combine this points position with a 3d model so that I could control the model with my face expression...
What can I do? 3dMax or Maya do not have the plug in( or I am too stupid that I could not find that), unity is also a good solutions. I once tried to use openGL, and I could control the model's position, however, controlling the face expression of the model is more difficult...
Could anyone help me, give me some suggestions or some paper to read ~
Thanks a lot

Object detection in 2D laser scan

Currently, I desperately try to detect an object (robot) based on 2D laser scans (of another robot). In the following two pictures, the blue arrow corresponds to the pose of the laser scanner and points towards the object, that I would like to detect.
one side of the object
two sides of the object
Since it is basically a 2D picture, my first approach was to to look for some OpenCV implementations such as HoughLinesP or LSDDetector in order to detect the lines. Unfortunately, since the focus of OpenCV is more on "real" images with "real" lines, this approach does not really work with the point clouds, as far as I have understood it correctly. Another famous library is the point-cloud library, which on the other hand focus more on 3D point clouds.
My current approach would be to segment the laser scans and then use some iterative closest point (ICP) C++ implementation to find a 2D point cloud template in the laser scans. Since I am not that familiar with object detection and all that nice stuff, I am quite sure that there are some more sophisticated solutions...
Do you have any suggestions?
Many thanks in advance :)
To get lines from points, you could try RANSAC.
You would iteratively fit lines to the points, then remove points corresponding to the new line and repeat until there is not enough points or the support is too low or something like that.
Hope it helps.

Using the coca cola logo as the calibration pattern for camera

I am looking for camera calibration techniques with OpenCV and saw the chessboard and circles methods, but I wanted to calibrate the camera with something that is in the real world and you don't have to print (printers are also not very accurate in what they print).
Is it possible to do calibration with complex shapes like the Coca Cola logo on the cans? Is it a problem that the surface is curved?
Thanks
Depending on what you want to achieve this is not at all necessarily a bad idea, and you are not the first one who had it. There was a technology that uses a CD, which is a strongly standardised object which at least used to exist on most households, for a simple camera calibration task. (There is little technical to be found online about this, as the technology was proprietary. This is business document, where the use of the CD is mentioned. Algorithmically, however, it is not difficult if you know camera calibration.)
The question is whether the precision you get is sufficient for your application. Don't expect any miracles here. Generally you can use almost any object you like to learn something about a camera, as long as you can detect it reliably and you know its geometry. Almost certainly you will have to take several pictures of the object. Curved surfaces are no problem per see. I regularly used a cylinder (larger than a beverage can, though, with a simple to detect pattern) to calibrate a complete camera rig of 12 SLRs.
Don't expect to find out of the box solutions and don't expect implementation to be trivial. You will have to work your way through the math. I recommend the book by Hartley and Zisserman, Multiple View Geometry for Computer vision. This paper describes an analysis-by-synthesis approach to calibration, which is the way to go for here (it does not describe exactly what you want, but the approach should generalise to arbitrary objects as long as you can detect them).
i can understand your wish, but it's a bad idea.
the calibration algorithm works by comparing real world points from the cam with a synthetical model ( yes, you have to supply that , too! ). so, while it's easy to calculate a 2d chessboard grid on the fly and use that, it will be very hard to do for your tin can, or any arbitrary household item you grab.
just give in, and print a rectangular chessbord grid to a piece of paper
(opencv comes with a pdf for that already).
don't use a real-life chessboard, a quadratic one is ambiguous to 90° rotation.
interesting idea.
What about displaying a checkerboard pattern (or sth else) on an lcd screen display and use that display as calibration pattern?? You would have to know the displaying size of the pattern though.
Googling I found this paper:
CAMERA CALIBRATION BASED ON LIQUID CRYSTAL DISPLAY (LCD)
ZHAN Zongqian
http://www.isprs.org/proceedings/XXXVII/congress/3b_pdf/04.pdf
comment: this doesn't answer the question about the coca-cola can but gives and idea for a solution to the grounding problem: camera calibration with a common object.

Structure from Motion (SfM) in a tunnel-like structure?

I have a very specific application in which I would like to try structure from motion to get a 3D representation. For now, all the software/code samples I have found for structure from motion are like this: "A fixed object that is photographed from all angle to create the 3D". This is not my case.
In my case, the camera is moving in the middle of a corridor and looking forward. Sometimes, the camera can look on other direction (Left, right, top, down). The camera will never go back or look back, it always move forward. Since the corridor is small, almost everything is visible (no hidden spot). The corridor can be very long sometimes.
I have tried this software and it doesn't work in my particular case (but it's fantastic with normal use). Does anybody can suggest me a library/software/tools/paper that could target my specific needs? Or did you ever needed to implement something like that? Any help is welcome!
Thanks!
What kind of corridors are you talking about and what kind of precision are you aiming for?
A priori, I don't see why your corridor would not be a fixed object photographed from different angles. The quality of your reconstruction might suffer if you only look forward and you can't get many different views of the scene, but standard methods should still work. Are you sure that the programs you used aren't failing because of your picture quality, arrangement or other reasons?
If you have to do the reconstruction yourself, I would start by
1) Calibrating your camera
2) Undistorting your images
3) Matching feature points in subsequent image pairs
4) Extracting a 3D point cloud for each image pair
You can then orient the point clouds with respect to one another, for example via ICP between two subsequent clouds. More sophisticated methods might not yield much difference if you don't have any closed loops in your dataset (as your camera is only moving forward).
OpenCV and the Point Cloud Library should be everything you need for these steps. Visualization might be more of a hassle, but the pretty pictures are what you pay for in commercial software after all.
Edit (2017/8): I haven't worked on this in the meantime, but I feel like this answer is missing some pieces. If I had to answer it today, I would definitely suggest looking into the keyword monocular SLAM, which has recently seen a lot of activity, not least because of drones with cameras. Notably, LSD-SLAM is open source and may not be as vulnerable to feature-deprived views, as it operates directly on the intensity. There even seem to be approaches combining inertial/odometry sensors with the image matching algorithms.
Good luck!
FvD is right in the sense that your corridor is a static object. Your scenario is the same and moving around and object and taking images from multiple views. Your views are just not arranged to provide a 360 degree view of the object.
I see you mentioned in your previous comment that the data is coming from a video? In that case, the problem could very well be the camera calibration. A camera calibration tells the SfM algorithm about the internal parameters of the camera (focal length, principal point, lens distortion etc.) In the absence of knowledge about these, the bundler in VSfM uses information from the EXIF data of the image. However, I don't think video stores any EXIF information (not a 100% sure). As a result, I think the entire algorithm is running with bad focal length information and cannot solve for the orientation.
Can you extract a few frames from the video and see if there is any EXIF information?

How to detect PizzaMarker

did somebody tried to find a pizzamarker like this one with "only" OpenCV so far?
I was trying to detect this one but couldn't get good results so far. I do not know where this marker is in picture (no ROI is possible), the marker will be somewhere in the room (different ligthning effects) and not faceing orthoonal towards us. What I want - the corners and later the orientation of this marker extracted with the corners but first of all only the 5Corners. (up, down, left, right, center)
I was trying so far: threshold, noiseclearing, find contours but nothing realy helped for a good result. Chessboards or square markers are normaly found because of their (parallel) lines- i guess this can't help me here...
What is an easy way to find those markers?
How would you start?
Use other colorformat like HSV?
A step-by-step idea or tutorial would be realy helpfull. Cause i couldn't find tuts at the net. Maybe this marker isn't called pizzamarker -> does somebody knows the real name?
thx for help
First - thank you for all of your help.
It seems that several methods are usefull. Some more or less time expansive.
For me it was the easiest with a template matching but not with the same marker.
I used only a small part of it...
this can be found 5 times(4 times negative and one positive) in this new marker:
now I use only the 4 most negatives Points and the most positive and got my 5 points that I finaly wanted. To make this more sure, I check if they are close to each other and will do a cornerSubPix().
If you need something which can operate in real-time I'd go down the edge detection route and look for intersecting lines like these guys did. Seems fast and robust to lighting changes.
Read up on the Hough Line Transform in openCV to get started.
Addendum:
Black to White is the strongest edge you can have. If you create a gradient image and use the strongest edges found in the scene (via histogram or other) you will be able to limit the detection to only the black/white edges. Look for intersections. This should give you a small number of center points to apply Hough ellipse detection (or alternate) to. You could rotate in a template as a further check if you wish.
BTW.. OpenCV has Edge Detection, Hough transform and FitEllipse if you do go down this route.
actually this 'pizza' pattern is one of the building blocks of the haar featured used in the
Viola–Jones object detection framework.
So what I would do is compute the summed area table, or integral image using cv::integral(img) and then run exhaustive search for this pattern, on various scales (size dependant).
In each window you are using only 9 points (top-left, top-center, ..., bottom left).
You can train and use cvHaarDetectObjects to detect the marker using VJ.
Probably not the fastest method but it should work.
You can find more info on object detection methods using OpenCV here: http://opencv.willowgarage.com/documentation/object_detection.html

Resources