How to test a private function, in Dart? - dart

Say I defined a private function in a dart file hello.dart:
_hello() {
return "world";
}
I want to test it in another file mytest.dart:
library mytest;
import 'dart:unittest/unittest.dart';
main() {
test('test private functions', () {
expect(_hello(), equals("world"));
}
}
But unfortunately, the test code can't be compiled. But I do need to test that private _hello function. Is there any solution?

While I agree that private methods/classes shouldn't be part of your tests, the meta package does provide an #visibleForTesting attribute, and the analyzer will give you a warning if you attempt to use the member outside of its original library or a test. You can use it like this:
import 'package:meta/meta.dart';
#visibleForTesting
String hello() {
return "world";
}
Your tests will now be able to use it without error or warning, but if someone else tries to use it they'll get a warning.
Again, as to the wisdom of doing this is another question - usually if it's something worth testing, it's something that's worth being public (or it'll get tested through your public interfaces and that's what really matters anyway). At the same time, you might just want to have rigorous tests or test driven principles even for your private methods/classes so - Dart lets you this way.
Edit to add: If you're developing a library and your file with #visibleForTesting will be exported, you are essentially adding public API. Someone can consume that with the analyzer turned off (or just ignore the warning), and if you remove it later you may break them.

Several people believe we shouldn't test private directly: it should be tested through the public interface.
An advantage of following this guidance, is that your test won't depend on your implementation. Said differently: if you want to change your private without changing what you expose to the world, then you won't have to touch your tests.
According to this school of though, if your private is important enough to justify a unit test, then it might make sense to extract it in a new class.
Putting all this together, what you could do here, is:
Create a kind of helper class with this hello method as public. You can then easily unit test it
Let your current class use an instance of this helper class
Test the public methods of your current class which relies on _hello: if this private has a bug, it should be catch by those higher level tests

I don't like either of the above answers. dart's private variable test design is very bad. dart's private visibility is based on library, and each .dart file is a library by default, similar language is rust, but rust can write test code directly in the file, there is no private visibility problem, while dart does not allow this.
Again, I don't think #visibleForTesting is a valid solution,
Because #visibleForTesting can only be used to decorate public declarations, it serves as a mere analysis reminder that developers cannot invoke these declarations in other files,
But from a syntax point of view, developers can't use the _ prefix either, so the form, public, private, becomes confusing. and violates dart's own naming rules.
The argument that one should not test private, or that they should be separated into other classes, is like a justification that is completely unacceptable.
First, private exist because they belong to a business logic/model etc. in a contextual relationship, and it does not make logical sense to separate it into another class.
Second, if you must do this, it will greatly increase the complexity of the code, for example, you move to other classes will lose access to the context variables, or you have to pass a separate reference, or have to create an instance of the class, indeed, then you can finally do some mocks, but you also add a layer of abstraction,
It's hard to imagine that if you were to do this for the whole project, you'd probably double your entire code layers.
For now, If you want your dart package to get more than 90% coverage,
you should not define any private.
It sounds harsh, but that's the real story.
[Alternative] No one seems to have mentioned this yet,
Using part / part of to expose the privates, you can define a test-specific .dart file as the public interface to the library(file) to be tested, and use it to expose all the private declarations that need to be tested. you can name them xxx.fortest.dart
But this is more of a psychological solution, since you are still essentially exposing all private variables/methods
But at least, it's better than splitting class,
Also, if one day dart finally solves this problem, we can simply delete these .fortest.dart files.

A suggestion would be to NOT make methods/classes private but to move code, where you want to hide implementation details, to the lib/src folder.
This folder is considered private.
I found this approach on the fuchsia.dev page in this section under "Testing".
If you want to expose those private methods/classes, that are located in the src folder, to the public, you could export them inside your lib/main file.
I tried to import one of my libraries A (projects are libraries) into another library B and couldn't import code that was in the src folder of library A.
According to this StackOverflow answer it could still be possible to access the src folder from A in library B.
From the dart documentation
As you might expect, the library code lives under the lib directory and is public to other packages. You can create any hierarchy under lib, as needed. By convention, implementation code is placed under lib/src. Code under lib/src is considered private; other packages should never need to import src/.... To make APIs under lib/src public, you can export lib/src files from a file that’s directly under lib.

Related

Google Dart visibility of methods and properties

Just to avoid some misunderstanding, I know that Google Dart handles things on a library level and that private properties and methods can be identified with a underscore prefix.
Is this still up to date as of 2017? Are there any plans for adding object level visibility keywords like: private, protected or public?
I dont just want to do something random but im rather interested in best practices. The way I see it is: if I dont want class one to see what class two has then both must be in different libraries, those libraries then are part of a bigger package.
libraries = privacy between classes
packages = privacy between files
What about fine grained control of privacy? I mean maybe there is 1 thing I want private. What about using visibility when using inheritance? I mean protected keywords can be really valuable.
Here a little example in one file:
class one {
int n = 1;
one() {
var test = new two(n);
print(test.showNumber());
}
}
class two {
int n = 2;
two(n) {
this.n += n;
}
int showNumber() {
return n;
}
}
As it stands now, both classes can do what they want.
Dart still has only library-level privacy.
Library-level privacy with identifiers starting with an underscore is also enforced at runtime.
The analyzer provides some additional features during static analysis which are ignored at runtime though.
Per convention also libraries inside lib/src are considered private, and should now be imported from other packages. The linter, a plugin for the analyzer notifies about violations. Seems to be part of the analyzer itself.
The meta package provides some annotations that are supported by the analyzer.
#protected produces a warning if public members are referenced by code from other libraries that is not within subclasses.
#visibleForTesting produces a warning if public members are references by code that is not within the test directory (of the same package I assume) Not sure if the analyzer actually warns about violations yet, otherwise it's planned to do that.
As far as I remember there are some issues for more rules but not yet implemented.
From #lrn's comment below
One reason for the current design is that Dart allows dynamic calls, even in strong mode. That means that o.foo() cannot be rejected based on "class level privacy" without retaining and checking extra information at runtime. With library/lexical based privacy, it's absolutely clear whether o.foo() or o._foo() is allowed (it always is, it's just that the latter can only refer to the _foo name of the same library). If Dart only had static resolution of identifiers, then it could use static information (like a private declaration) to reject at compile time without a runtime overhead.

What its the first, the annotated class (egg) or used class (chicken)?

certainly I have not read something fundamental, and it seems very strange, but I wonder.
Suppose you use
#SharedPref
public interface SharedPreferencesInterface {
#DefaultBoolean(true)
boolean showDeviceName();
I have the IDE (idea) configured with Gradle, and I generated the SharedPreferencesInterface_ class that I can use in another class as
#Pref
SharedPreferencesInterface_ prefs;
But suppose someone now download the project, how can the use? Because the class where used SharedPreferencesInterface_ not compile because the class does not exist, and the class does not exist because compilation errors ...
How it's made? Surely there is a way ... configured to compile certain classes first?
Help is appreciated.
A greeting.
But suppose someone now download the project, how can the use? Because
the class where used SharedPreferencesInterface_ not compile because
the class does not exist, and the class does not exist because
compilation errors ...
This is the same situation when you compile a project in a full build (when no classes are generated yet). Actually Gradle always does a full build currently in Android projects. No configuration is needed at all in addition to the standard AndroidAnnotaions config.
Actually this works because the compiler does not fully compiles your class before passing it to annotations processing. It is clear it should not to, because the class may reference generated classes, which are only available after the processing. So first the compiler creates a model of the classes, only parses the structure of the them (fields, methods, return types, parameter types, etc), but not the implementations. Also it allows missing types even on fields. If it finds a missing type, it assigns to TypeKind.ERROR, but the name of the type is still available for the annotation processor. After the processor is done, it generates the missing class, so the kind of the class is no longer TypeKind.ERROR, and the compilation can succeed.

Why does one use dependency injection?

I'm trying to understand dependency injections (DI), and once again I failed. It just seems silly. My code is never a mess; I hardly write virtual functions and interfaces (although I do once in a blue moon) and all my configuration is magically serialized into a class using json.net (sometimes using an XML serializer).
I don't quite understand what problem it solves. It looks like a way to say: "hi. When you run into this function, return an object that is of this type and uses these parameters/data."
But... why would I ever use that? Note I have never needed to use object as well, but I understand what that is for.
What are some real situations in either building a website or desktop application where one would use DI? I can come up with cases easily for why someone may want to use interfaces/virtual functions in a game, but it's extremely rare (rare enough that I can't remember a single instance) to use that in non-game code.
First, I want to explain an assumption that I make for this answer. It is not always true, but quite often:
Interfaces are adjectives; classes are nouns.
(Actually, there are interfaces that are nouns as well, but I want to generalize here.)
So, e.g. an interface may be something such as IDisposable, IEnumerable or IPrintable. A class is an actual implementation of one or more of these interfaces: List or Map may both be implementations of IEnumerable.
To get the point: Often your classes depend on each other. E.g. you could have a Database class which accesses your database (hah, surprise! ;-)), but you also want this class to do logging about accessing the database. Suppose you have another class Logger, then Database has a dependency to Logger.
So far, so good.
You can model this dependency inside your Database class with the following line:
var logger = new Logger();
and everything is fine. It is fine up to the day when you realize that you need a bunch of loggers: Sometimes you want to log to the console, sometimes to the file system, sometimes using TCP/IP and a remote logging server, and so on ...
And of course you do NOT want to change all your code (meanwhile you have gazillions of it) and replace all lines
var logger = new Logger();
by:
var logger = new TcpLogger();
First, this is no fun. Second, this is error-prone. Third, this is stupid, repetitive work for a trained monkey. So what do you do?
Obviously it's a quite good idea to introduce an interface ICanLog (or similar) that is implemented by all the various loggers. So step 1 in your code is that you do:
ICanLog logger = new Logger();
Now the type inference doesn't change type any more, you always have one single interface to develop against. The next step is that you do not want to have new Logger() over and over again. So you put the reliability to create new instances to a single, central factory class, and you get code such as:
ICanLog logger = LoggerFactory.Create();
The factory itself decides what kind of logger to create. Your code doesn't care any longer, and if you want to change the type of logger being used, you change it once: Inside the factory.
Now, of course, you can generalize this factory, and make it work for any type:
ICanLog logger = TypeFactory.Create<ICanLog>();
Somewhere this TypeFactory needs configuration data which actual class to instantiate when a specific interface type is requested, so you need a mapping. Of course you can do this mapping inside your code, but then a type change means recompiling. But you could also put this mapping inside an XML file, e.g.. This allows you to change the actually used class even after compile time (!), that means dynamically, without recompiling!
To give you a useful example for this: Think of a software that does not log normally, but when your customer calls and asks for help because he has a problem, all you send to him is an updated XML config file, and now he has logging enabled, and your support can use the log files to help your customer.
And now, when you replace names a little bit, you end up with a simple implementation of a Service Locator, which is one of two patterns for Inversion of Control (since you invert control over who decides what exact class to instantiate).
All in all this reduces dependencies in your code, but now all your code has a dependency to the central, single service locator.
Dependency injection is now the next step in this line: Just get rid of this single dependency to the service locator: Instead of various classes asking the service locator for an implementation for a specific interface, you - once again - revert control over who instantiates what.
With dependency injection, your Database class now has a constructor that requires a parameter of type ICanLog:
public Database(ICanLog logger) { ... }
Now your database always has a logger to use, but it does not know any more where this logger comes from.
And this is where a DI framework comes into play: You configure your mappings once again, and then ask your DI framework to instantiate your application for you. As the Application class requires an ICanPersistData implementation, an instance of Database is injected - but for that it must first create an instance of the kind of logger which is configured for ICanLog. And so on ...
So, to cut a long story short: Dependency injection is one of two ways of how to remove dependencies in your code. It is very useful for configuration changes after compile-time, and it is a great thing for unit testing (as it makes it very easy to inject stubs and / or mocks).
In practice, there are things you can not do without a service locator (e.g., if you do not know in advance how many instances you do need of a specific interface: A DI framework always injects only one instance per parameter, but you can call a service locator inside a loop, of course), hence most often each DI framework also provides a service locator.
But basically, that's it.
P.S.: What I described here is a technique called constructor injection, there is also property injection where not constructor parameters, but properties are being used for defining and resolving dependencies. Think of property injection as an optional dependency, and of constructor injection as mandatory dependencies. But discussion on this is beyond the scope of this question.
I think a lot of times people get confused about the difference between dependency injection and a dependency injection framework (or a container as it is often called).
Dependency injection is a very simple concept. Instead of this code:
public class A {
private B b;
public A() {
this.b = new B(); // A *depends on* B
}
public void DoSomeStuff() {
// Do something with B here
}
}
public static void Main(string[] args) {
A a = new A();
a.DoSomeStuff();
}
you write code like this:
public class A {
private B b;
public A(B b) { // A now takes its dependencies as arguments
this.b = b; // look ma, no "new"!
}
public void DoSomeStuff() {
// Do something with B here
}
}
public static void Main(string[] args) {
B b = new B(); // B is constructed here instead
A a = new A(b);
a.DoSomeStuff();
}
And that's it. Seriously. This gives you a ton of advantages. Two important ones are the ability to control functionality from a central place (the Main() function) instead of spreading it throughout your program, and the ability to more easily test each class in isolation (because you can pass mocks or other faked objects into its constructor instead of a real value).
The drawback, of course, is that you now have one mega-function that knows about all the classes used by your program. That's what DI frameworks can help with. But if you're having trouble understanding why this approach is valuable, I'd recommend starting with manual dependency injection first, so you can better appreciate what the various frameworks out there can do for you.
As the other answers stated, dependency injection is a way to create your dependencies outside of the class that uses it. You inject them from the outside, and take control about their creation away from the inside of your class. This is also why dependency injection is a realization of the Inversion of control (IoC) principle.
IoC is the principle, where DI is the pattern. The reason that you might "need more than one logger" is never actually met, as far as my experience goes, but the actually reason is, that you really need it, whenever you test something. An example:
My Feature:
When I look at an offer, I want to mark that I looked at it automatically, so that I don't forget to do so.
You might test this like this:
[Test]
public void ShouldUpdateTimeStamp
{
// Arrange
var formdata = { . . . }
// System under Test
var weasel = new OfferWeasel();
// Act
var offer = weasel.Create(formdata)
// Assert
offer.LastUpdated.Should().Be(new DateTime(2013,01,13,13,01,0,0));
}
So somewhere in the OfferWeasel, it builds you an offer Object like this:
public class OfferWeasel
{
public Offer Create(Formdata formdata)
{
var offer = new Offer();
offer.LastUpdated = DateTime.Now;
return offer;
}
}
The problem here is, that this test will most likely always fail, since the date that is being set will differ from the date being asserted, even if you just put DateTime.Now in the test code it might be off by a couple of milliseconds and will therefore always fail. A better solution now would be to create an interface for this, that allows you to control what time will be set:
public interface IGotTheTime
{
DateTime Now {get;}
}
public class CannedTime : IGotTheTime
{
public DateTime Now {get; set;}
}
public class ActualTime : IGotTheTime
{
public DateTime Now {get { return DateTime.Now; }}
}
public class OfferWeasel
{
private readonly IGotTheTime _time;
public OfferWeasel(IGotTheTime time)
{
_time = time;
}
public Offer Create(Formdata formdata)
{
var offer = new Offer();
offer.LastUpdated = _time.Now;
return offer;
}
}
The Interface is the abstraction. One is the REAL thing, and the other one allows you to fake some time where it is needed. The test can then be changed like this:
[Test]
public void ShouldUpdateTimeStamp
{
// Arrange
var date = new DateTime(2013, 01, 13, 13, 01, 0, 0);
var formdata = { . . . }
var time = new CannedTime { Now = date };
// System under test
var weasel= new OfferWeasel(time);
// Act
var offer = weasel.Create(formdata)
// Assert
offer.LastUpdated.Should().Be(date);
}
Like this, you applied the "inversion of control" principle, by injecting a dependency (getting the current time). The main reason to do this is for easier isolated unit testing, there are other ways of doing it. For example, an interface and a class here is unnecessary since in C# functions can be passed around as variables, so instead of an interface you could use a Func<DateTime> to achieve the same. Or, if you take a dynamic approach, you just pass any object that has the equivalent method (duck typing), and you don't need an interface at all.
You will hardly ever need more than one logger. Nonetheless, dependency injection is essential for statically typed code such as Java or C#.
And...
It should also be noted that an object can only properly fulfill its purpose at runtime, if all its dependencies are available, so there is not much use in setting up property injection. In my opinion, all dependencies should be satisfied when the constructor is being called, so constructor-injection is the thing to go with.
I think the classic answer is to create a more decoupled application, which has no knowledge of which implementation will be used during runtime.
For example, we're a central payment provider, working with many payment providers around the world. However, when a request is made, I have no idea which payment processor I'm going to call. I could program one class with a ton of switch cases, such as:
class PaymentProcessor{
private String type;
public PaymentProcessor(String type){
this.type = type;
}
public void authorize(){
if (type.equals(Consts.PAYPAL)){
// Do this;
}
else if(type.equals(Consts.OTHER_PROCESSOR)){
// Do that;
}
}
}
Now imagine that now you'll need to maintain all this code in a single class because it's not decoupled properly, you can imagine that for every new processor you'll support, you'll need to create a new if // switch case for every method, this only gets more complicated, however, by using Dependency Injection (or Inversion of Control - as it's sometimes called, meaning that whoever controls the running of the program is known only at runtime, and not complication), you could achieve something very neat and maintainable.
class PaypalProcessor implements PaymentProcessor{
public void authorize(){
// Do PayPal authorization
}
}
class OtherProcessor implements PaymentProcessor{
public void authorize(){
// Do other processor authorization
}
}
class PaymentFactory{
public static PaymentProcessor create(String type){
switch(type){
case Consts.PAYPAL;
return new PaypalProcessor();
case Consts.OTHER_PROCESSOR;
return new OtherProcessor();
}
}
}
interface PaymentProcessor{
void authorize();
}
** The code won't compile, I know :)
The main reason to use DI is that you want to put the responsibility of the knowledge of the implementation where the knowledge is there. The idea of DI is very much inline with encapsulation and design by interface.
If the front end asks from the back end for some data, then is it unimportant for the front end how the back end resolves that question. That is up to the requesthandler.
That is already common in OOP for a long time. Many times creating code pieces like:
I_Dosomething x = new Impl_Dosomething();
The drawback is that the implementation class is still hardcoded, hence has the front end the knowledge which implementation is used. DI takes the design by interface one step further, that the only thing the front end needs to know is the knowledge of the interface.
In between the DYI and DI is the pattern of a service locator, because the front end has to provide a key (present in the registry of the service locator) to lets its request become resolved.
Service locator example:
I_Dosomething x = ServiceLocator.returnDoing(String pKey);
DI example:
I_Dosomething x = DIContainer.returnThat();
One of the requirements of DI is that the container must be able to find out which class is the implementation of which interface. Hence does a DI container require strongly typed design and only one implementation for each interface at the same time. If you need more implementations of an interface at the same time (like a calculator), you need the service locator or factory design pattern.
D(b)I: Dependency Injection and Design by Interface.
This restriction is not a very big practical problem though. The benefit of using D(b)I is that it serves communication between the client and the provider. An interface is a perspective on an object or a set of behaviours. The latter is crucial here.
I prefer the administration of service contracts together with D(b)I in coding. They should go together. The use of D(b)I as a technical solution without organizational administration of service contracts is not very beneficial in my point of view, because DI is then just an extra layer of encapsulation. But when you can use it together with organizational administration you can really make use of the organizing principle D(b)I offers.
It can help you in the long run to structure communication with the client and other technical departments in topics as testing, versioning and the development of alternatives. When you have an implicit interface as in a hardcoded class, then is it much less communicable over time then when you make it explicit using D(b)I. It all boils down to maintenance, which is over time and not at a time. :-)
Quite frankly, I believe people use these Dependency Injection libraries/frameworks because they just know how to do things in runtime, as opposed to load time. All this crazy machinery can be substituted by setting your CLASSPATH environment variable (or other language equivalent, like PYTHONPATH, LD_LIBRARY_PATH) to point to your alternative implementations (all with the same name) of a particular class. So in the accepted answer you'd just leave your code like
var logger = new Logger() //sane, simple code
And the appropriate logger will be instantiated because the JVM (or whatever other runtime or .so loader you have) would fetch it from the class configured via the environment variable mentioned above.
No need to make everything an interface, no need to have the insanity of spawning broken objects to have stuff injected into them, no need to have insane constructors with every piece of internal machinery exposed to the world. Just use the native functionality of whatever language you're using instead of coming up with dialects that won't work in any other project.
P.S.: This is also true for testing/mocking. You can very well just set your environment to load the appropriate mock class, in load time, and skip the mocking framework madness.

A pragmatic view on private vs public

I've always wondered on the topic of public, protected and private properties. My memory can easily recall times when I had to hack somebody's code, and having the hacked-upon class variables declared as private was always upsetting.
Also, there were (more) times I've written a class myself, and had never recognized any potential gain of privatizing the property. I should note here that using public vars is not in my habit: I adhere to the principles of OOP by utilizing getters and setters.
So, what's the whole point in these restrictions?
The use of private and public is called Encapsulation. It is the simple insight that a software package (class or module) needs an inside and an outside.
The outside (public) is your contract with the rest of the world. You should try to keep it simple, coherent, obvious, foolproof and, very important, stable.
If you are interested in good software design the rule simply is: make all data private, and make methods only public when they need to be.
The principle for hiding the data is that the sum of all fields in a class define the objects state. For a well written class, each object should be responsible for keeping a valid state. If part of the state is public, the class can never give such guarantees.
A small example, suppose we have:
class MyDate
{
public int y, m, d;
public void AdvanceDays(int n) { ... } // complicated month/year overflow
// other utility methods
};
You cannot prevent a user of the class to ignore AdvanceDays() and simply do:
date.d = date.d + 1; // next day
But if you make y, m, d private and test all your MyDate methods, you can guarantee that there will only be valid dates in the system.
The whole point is to use private and protected to prevent exposing internal details of your class, so that other classes only have access to the public "interfaces" provided by your class. This can be worthwhile if done properly.
I agree that private can be a real pain, especially if you are extending classes from a library. Awhile back I had to extend various classes from the Piccolo.NET framework and it was refreshing that they had declared everything I needed as protected instead of private, so I was able to extend everything I needed without having to copy their code and/or modify the library. An important take-away lesson from that is if you are writing code for a library or other "re-usable" component, that you really should think twice before declaring anything private.
The keyword private shouldn't be used to privatize a property that you want to expose, but to protect the internal code of your class. I found them very helpful because they help you to define the portions of your code that must be hidden from those that can be accessible to everyone.
One example that comes to my mind is when you need to do some sort of adjustment or checking before setting/getting the value of a private member. Therefore you'd create a public setter/getter with some logic (check if something is null or any other calculations) instead of accessing the private variable directly and always having to handle that logic in your code. It helps with code contracts and what is expected.
Another example is helper functions. You might break down some of your bigger logic into smaller functions, but that doesn't mean you want to everyone to see and use these helper functions, you only want them to access your main API functions.
In other words, you want to hide some of the internals in your code from the interface.
See some videos on APIs, such as this Google talk.
Having recently had the extreme luxury of being able to design and implement an object system from scratch, I took the policy of forcing all variables to be (equivalent to) protected. My goal was to encourage users to always treat the variables as part of the implementation and not the specification. OTOH, I also left in hooks to allow code to break this restriction as there remain reasons to not follow it (e.g., the object serialization engine cannot follow the rules).
Note that my classes did not need to enforce security; the language had other mechanisms for that.
In my opinion the most important reason for use private members is hiding implementation, so that it can changed in the future without changing descendants.
Some languages - Smalltalk, for instance - don't have visibility modifiers at all.
In Smalltalk's case, all instance variables are always private and all methods are always public. A developer indicates that a method's "private" - something that might change, or a helper method that doesn't make much sense on its own - by putting the method in the "private" protocol.
Users of a class can then see that they should think twice about sending a message marked private to that class, but still have the freedom to make use of the method.
(Note: "properties" in Smalltalk are simply getter and setter methods.)
I personally rarely make use of protected members. I usually favor composition, the decorator pattern or the strategy pattern. There are very few cases in which I trust a subclass(ing programmer) to handle protected variables correctly. Sometimes I have protected methods to explicitly offer an interface specifically for subclasses, but these cases are actually rare.
Most of the time I have an absract base class with only public pure virtuals (talking C++ now), and implementing classes implement these. Sometimes they add some special initialization methods or other specific features, but the rest is private.
First of all 'properties' could refer to different things in different languages. For example, in Java you would be meaning instance variables, whilst C# has a distinction between the two.
I'm going to assume you mean instance variables since you mention getters/setters.
The reason as others have mentioned is Encapsulation. And what does Encapsulation buy us?
Flexibility
When things have to change (and they usually do), we are much less likely to break the build by properly encapsulating properties.
For example we may decide to make a change like:
int getFoo()
{
return foo;
}
int getFoo()
{
return bar + baz;
}
If we had not encapsulated 'foo' to begin with, then we'd have much more code to change. (than this one line)
Another reason to encapsulate a property, is to provide a way of bullet-proofing our code:
void setFoo(int val)
{
if(foo < 0)
throw MyException(); // or silently ignore
foo = val;
}
This is also handy as we can set a breakpoint in the mutator, so that we can break whenever something tries to modify our data.
If our property was public, then we could not do any of this!

Make "private" members behave like "strict private"

What about a feature in an upcoming Delphi version enabling that?
Maybe it could be a compiler switch promoting all **private**s to **strict private**s.
... or it could be a feature of the new non-legacy compiler font-end Nick Hodges was talking about. => private does always behave like strict private.
EDIT: The reason why I want this is because I just don't want to add thousands of stricts to my private modifiers. Furthermore the "strict private" behavior is the default behavior in any object oriented language I'm familiar with!
To quote from the article:
So, we are working to create a “new Delphi” and a new compiler architecture, to keep your existing code working, to emit 64-bit binaries using both Delphi and C++Builder, and maybe a few other kind of binaries while we are at it. And it all has to be done right so that it all works for you.
I interpret that as, if codegear is going to change the behaviour of private. Then they wil proide an option to keep the old behaviour just like they did in the past.
Just for clarification, within a class there are 6 different access levels (ok 7 but automated is deprecated).
public: Anything that can access the object can access this.
protected: Methods in the class and its subclasses and anything in the same unit can access.
strict protected: Methods in the class and its subclasses can access.
private: Methods in the class and anything in the same unit can access.
strict private: Methods in the class.
published: As public buth with runtime information for the object inspector.
The current private implementation is private to everything outside the unit it is declared in. So if your reasoning for not wanting to add the strict statements is that you don't want to modify your existing units, then you have nothing to gain except breaking any existing code that accesses the class in the same unit. As long as your existing units are not modified, then the difference between strict and non-strict private is academic.
If your reasoning for the strict behavior is to use the compiler to help you refactor code that takes advantage of the less-private behavior, then adding the strict to one class at a time is a good incremental approach so you can get to a compilable and testable state more often. A whole sale change of behavior would require fixing every violation before you knew if any of them worked.
The reason private behaves like it does is similar to C++'s friend - it allows certain classes (or procedural code) to access private members. The VCL and RTL makes heavy use of this behavior, so a compiler switch or an all out change would break all of that code.
Delphi's implementation of private is private enough for all practical purposes since typically you control the unit your class is declared in. If you only ever declare one class per unit, and never include procedural code, then the difference is only academic.
I don't quite understand the question. But why would you need this feature? Why not just replace Privates in your code with Strict Privates if that is what you desire?
I expected your reason for wanting to change the meaning of private was that you wanted the stricter behavior without having to break backward compatibility. I figured you were producing a library that you wished to be usable with Delphi 7 and prior, which don't have the strict modifier.
But if that's not your reason, then I don't think you've got much to work with. You can convert all your private code to strict private pretty easily with a simple script.
perl -i.bak -pe 's/(?<!\bstrict )\b(private|protected)\b/strict $1/ig' *.pas
That takes any private or protected that isn't already strict and puts strict in front of it. It modifies the files in-place. (Beware; it may insert "strict" into string literals, too.)
So anyway, I don't think we're going to see private become strict anytime soon. Doing that could break old code, and there's not really much practical gain from it. It lets purists have "more pure" code, but they can already have that simply by using strict. I think that if we were ever going to have "default strict" visibility, then the time for the change was when strict was introduced in the first place. But as things are today, we already have a way of getting strict visibility specifiers, so there's no need for another change.

Resources