Eliminating Epsilon Production for Left Recursion Elimination - parsing

Im following the algorithm for left recursion elimination from a grammar.It says remove the epsilon production if there is any
I have the following grammer
S-->Aa/b
A-->Ac/Sd/∈
I can see after removing the epsilon productions the grammer becomes
1) S-->Aa/a/b
2)A-->Ac/Sd/c/d
Im confused where the a/b comes in 1) and c/d comes in 2)
Can someone explain this?

lets look at the rule S->Aa, if A->∈ then S->∈a giving just S->a, so together with the previous rules we get S->Aa|a|b
now lets check the rule A->Ac and A->∈c which gives us A->c.
what about A->Sd? I dont see how you got A->d as a rule. if that is a rule, then the string "da" is accepted by this grammar (S->Aa & A->d --> "da"), but try to construct this string with the original grammar - if you start with S and the string finishes with a, it means you must use S->Aa, but then in order to have a "d" you must use A->Sd, which forces us to have another "a" or "b", meaning we cannot construct this string, and the rule A->d is not correct.

Related

First and follow in the following grammar

The following grammar is given:-
E->E+T|T
T->T*F|F
F->id
I have tried to find the first and follow. Can anyone verify it whether its correct???
First(E)={id}
First(T)={id}
First(F)={id}
Follow(E)={+,id}
Follow(T)={+}
Follow(F)={id,*}
FIRST sets are correct,
FOLLOW(A) of non-terminal A is the set of terminal symbols that can follow in the
derivation sequence
FOLLOW(E), check where it is there in the right-hand side of production. It is there in
E->E+T
what follows E when we consider this production for derivation is '+' and '$'(End of Input) is also added to the follow of start symbol
FOLLOW(E) ={+,$}
FOLLOW(T), it is there in right-hand side of three productions
E-> E+T E->T T->T*F
FOLLOW(T)={*} U FOLLOW(E)={*,+,$}
FOLLOW(F), it is there in right-hand side of two productions
T->T*F T->F
FOLLOW(F)=FOLLOW(T)={*,+,$}
If you are doing this exercise for computing LL(1) parsing table then first eliminate left recursion and proceed.

Pin & recoverWhile in a .bnf (Parsing)

I've searched the internet far and wide (for at least half a day now) and I can't seem to find the answers needed.
Currently I'm trying to create a .bnf-file for an IntelliJ-Plugin with custom language support.
A few tutorials mention the existance of {pin=1},{pin=2} and {recoverWhile=xyz}, but I didn't find any real explanation on their uses, and if there are any other things I should know (maybe a {pin=3} also exists?).
So could somebody tell me what exactly those flags, methods or however they're called are, and how to use them in my .bnf, please?
Thank you for your help and best regards,
Fuchs
These attributes are explained here:
https://github.com/JetBrains/Grammar-Kit/blob/master/HOWTO.md#22-using-recoverwhile-attribute
https://github.com/JetBrains/Grammar-Kit/blob/master/TUTORIAL.md
But the usage is not trivial. A good idea is to use Live Preview to play around with it.
My understanding:
Pin and recoverWhile attributes are used to recover parser from errors.
Pin specifies a part of the rule (by index or literally) after successful parsing of which the rule considered successful.
In the example:
expr ::= expr1 "+" expr2 {pin=1}
if expr1 is matched, the whole rule will be considered successful and parser will try yo match the rest.
if pin=2 the rule will be considered successful after matching "+" and will fail if expr1 or "+" not matched.
RecoverWhile attribute specifies where to skip after parsing the rule. Independently of its success.
For example
{recoverWhile=expr_recover}
expr_recover ::= !(";" | ".")
will skip all input before ";" or ".". I.e. parser will start matching next rule from ";" or ".".

Grammar: start: (a b)? a c; Input: a d. Which error correct at position 2? 1. expected "b", "c". OR expected "c"

Grammar:
rule: (a b)? a c ;
Input:
a d
Question: Which error message correct at position 2 for given input?
1. expected "b", "c".
2. expected "c".
P.S.
I write parser and I have choice (dilemma) take into account that "b" expected at position or not take.
The #1 error (expected "b", "c") want to say that input "a b" expected but because it optional it may not expected but possible.
I don't know possible is the same as expected or not?
Which error message better and correct #1 or #2?
Thanks for answers.
P.S.
In first case I define marker of testing as limit of position.
if(_inputPos > testing) {
_failure(_inputPos, _code[cp + {{OFFSET_RESULT}}]);
}
Limit moved in optional expressions:
OPTIONAL_EXPRESSION:
testing = _inputPos;
The "b" expression move _inputPos above the testing pos and add failure at _inputPos.
In second case I can define marker of testing as boolean flag.
if(!testing) {
_failure(_inputPos, _code[cp + {{OFFSET_RESULT}}]);
}
The "b" expression in this case not add failure because it tested (inner for optional expression).
What you think what is better and correct?
Testing defined as specific position and if expression above this position (_inputPos > testing) it add failure (even it inside optional expression).
Testing defined as flag and if this flag set that the failures not takes into account. After executing optional expression it restore (not reset!) previous value of testing (true or false).
Also failures not takes into account if rule not fails. They only reported if parsing fails.
P.S.
Changes at 06 Jan 2014
This question raised because it related to two different problems.
First problem:
Parsing expression grammar (PEG) describe only three atomic items of input:
terminal symbol
nonterminal symbol
empty string
This grammar does not provide such operation as lexical preprocessing an thus it does not provide such element as the token.
Second problem:
What is a grammar? Are two grammars can be considred equal if they accept the same input but produce different result?
Assume we have two grammar:
Grammar 1
rule <- type? identifier
Grammar 2
rule <- type identifier / identifier
They both accept the same input but produce (in PEG) different result.
Grammar 1 results:
{type : type, identifier : identifier}
{type : null, identifier : identifier}
Grammar 2 results:
{type : type, identifier : identifier}
{identifier : identifier}
Quetions:
Both grammar equal?
It is painless to do optimization of grammars?
My answer on both questions is negative. No equal, Not painless.
But you may ask. "But why this happens?".
I can answer to you. "Because this is not a problem. This is a feature".
In PEG parser expression ALWAYS consists from these parts.
ORDERED_CHOICE => SEQUENCE => EXPRESSION
And this explanation is the my answer on question "But why this happens?".
Another problem.
PEG parser does not recognize WHITESPACES because it does not have tokens and tokens separators.
Now look at this grammar (in short):
program <- WHITESPACE expr EOF
expr <- ruleX
ruleX <- 'X' WHITESPACE
WHITESPACE < ' '?
EOF <- ! .
All PEG grammar desribed in this manner.
First WHITESPACE at begin and other WHITESPACE (often) at the end of rule.
In this case in PEG optional WHITESPACE must be assumed as expected.
But WHITESPACE not means only space. It may be more complex [\t\n\r] and even comments.
But the main rule of error messages is the following.
If not possible to display all expected elements (or not possible to display at least one from all set of expected elements) in this case is more correct do not display anything.
More precisely required to display "unexpected" error mesage.
How you in PEG will display expected WHITESPACE?
Parser error: expected WHITESPACE
Parser error: expected ' ', '\t', '\n' , 'r'
What about start charcters of comments? They also may be part of WHITESPACE in some grammars.
In this case optional WHITESPACE will be reject all other potential expected elements because not possible correctly to display WHITESPACE in error message because WHITESPACE is too complex to display.
Is this good or bad?
I think this is not bad and required some tricks to hide this nature of PEG parsers.
And in my PEG parser I not assume that the inner expression at first position of optional (optional & zero_or_more) expression must be treated as expected.
But all other inner (except at the first position) must treated as expected.
Example 1:
List<int list; // type? ident
Here "List<int" is a "type". But missing ">" is not at the first position in optional "type?".
This failure take into account and report as "expected '>'"
This is because we not skip "type" but enter into "type" and after really optional "List" we move position from first to next real "expected" (that already outside of testing position) element.
"List" was in "testing" position.
If inner expression (inside optional expression) "fits in the limitation" not continue at next position then it not assumed as the expected input.
From this assumption has been asked main question.
You must just take into account that we are talking about PEG parsers and their error messages.
Here is your grammar:
What is clear here is that after the first a there are two possible inputs: b or c. Your error message should not prioritize one over the other.
The basic idea to produce an error message for an invalid input is to find the most far place you failed (if your grammar where d | (a b)? a c, d wouldn't be part of the error) and determine what are all possible inputs that could make you advance and say "expected '...' but got '...'". There are other approaches to try to recover the parser and force it to continue. If there is only one possible expected token, let's temporarily insert it into the token stream and continue as if it where there since ever. This would lead to better error detection as you can find errors beyond the point where the parser first stopped.

Haskell/Parsec: How do you use the functions in Text.Parsec.Indent?

I'm having trouble working out how to use any of the functions in the Text.Parsec.Indent module provided by the indents package for Haskell, which is a sort of add-on for Parsec.
What do all these functions do? How are they to be used?
I can understand the brief Haddock description of withBlock, and I've found examples of how to use withBlock, runIndent and the IndentParser type here, here and here. I can also understand the documentation for the four parsers indentBrackets and friends. But many things are still confusing me.
In particular:
What is the difference between withBlock f a p and
do aa <- a
pp <- block p
return f aa pp
Likewise, what's the difference between withBlock' a p and do {a; block p}
In the family of functions indented and friends, what is ‘the level of the reference’? That is, what is ‘the reference’?
Again, with the functions indented and friends, how are they to be used? With the exception of withPos, it looks like they take no arguments and are all of type IParser () (IParser defined like this or this) so I'm guessing that all they can do is to produce an error or not and that they should appear in a do block, but I can't figure out the details.
I did at least find some examples on the usage of withPos in the source code, so I can probably figure that out if I stare at it for long enough.
<+/> comes with the helpful description “<+/> is to indentation sensitive parsers what ap is to monads” which is great if you want to spend several sessions trying to wrap your head around ap and then work out how that's analogous to a parser. The other three combinators are then defined with reference to <+/>, making the whole group unapproachable to a newcomer.
Do I need to use these? Can I just ignore them and use do instead?
The ordinary lexeme combinator and whiteSpace parser from Parsec will happily consume newlines in the middle of a multi-token construct without complaining. But in an indentation-style language, sometimes you want to stop parsing a lexical construct or throw an error if a line is broken and the next line is indented less than it should be. How do I go about doing this in Parsec?
In the language I am trying to parse, ideally the rules for when a lexical structure is allowed to continue on to the next line should depend on what tokens appear at the end of the first line or the beginning of the subsequent line. Is there an easy way to achieve this in Parsec? (If it is difficult then it is not something which I need to concern myself with at this time.)
So, the first hint is to take a look at IndentParser
type IndentParser s u a = ParsecT s u (State SourcePos) a
I.e. it's a ParsecT keeping an extra close watch on SourcePos, an abstract container which can be used to access, among other things, the current column number. So, it's probably storing the current "level of indentation" in SourcePos. That'd be my initial guess as to what "level of reference" means.
In short, indents gives you a new kind of Parsec which is context sensitive—in particular, sensitive to the current indentation. I'll answer your questions out of order.
(2) The "level of reference" is the "belief" referred in the current parser context state of where this indentation level starts. To be more clear, let me give some test cases on (3).
(3) In order to start experimenting with these functions, we'll build a little test runner. It'll run the parser with a string that we give it and then unwrap the inner State part using an initialPos which we get to modify. In code
import Text.Parsec
import Text.Parsec.Pos
import Text.Parsec.Indent
import Control.Monad.State
testParse :: (SourcePos -> SourcePos)
-> IndentParser String () a
-> String -> Either ParseError a
testParse f p src = fst $ flip runState (f $ initialPos "") $ runParserT p () "" src
(Note that this is almost runIndent, except I gave a backdoor to modify the initialPos.)
Now we can take a look at indented. By examining the source, I can tell it does two things. First, it'll fail if the current SourcePos column number is less-than-or-equal-to the "level of reference" stored in the SourcePos stored in the State. Second, it somewhat mysteriously updates the State SourcePos's line counter (not column counter) to be current.
Only the first behavior is important, to my understanding. We can see the difference here.
>>> testParse id indented ""
Left (line 1, column 1): not indented
>>> testParse id (spaces >> indented) " "
Right ()
>>> testParse id (many (char 'x') >> indented) "xxxx"
Right ()
So, in order to have indented succeed, we need to have consumed enough whitespace (or anything else!) to push our column position out past the "reference" column position. Otherwise, it'll fail saying "not indented". Similar behavior exists for the next three functions: same fails unless the current position and reference position are on the same line, sameOrIndented fails if the current column is strictly less than the reference column, unless they are on the same line, and checkIndent fails unless the current and reference columns match.
withPos is slightly different. It's not just a IndentParser, it's an IndentParser-combinator—it transforms the input IndentParser into one that thinks the "reference column" (the SourcePos in the State) is exactly where it was when we called withPos.
This gives us another hint, btw. It lets us know we have the power to change the reference column.
(1) So now let's take a look at how block and withBlock work using our new, lower level reference column operators. withBlock is implemented in terms of block, so we'll start with block.
-- simplified from the actual source
block p = withPos $ many1 (checkIndent >> p)
So, block resets the "reference column" to be whatever the current column is and then consumes at least 1 parses from p so long as each one is indented identically as this newly set "reference column". Now we can take a look at withBlock
withBlock f a p = withPos $ do
r1 <- a
r2 <- option [] (indented >> block p)
return (f r1 r2)
So, it resets the "reference column" to the current column, parses a single a parse, tries to parse an indented block of ps, then combines the results using f. Your implementation is almost correct, except that you need to use withPos to choose the correct "reference column".
Then, once you have withBlock, withBlock' = withBlock (\_ bs -> bs).
(5) So, indented and friends are exactly the tools to doing this: they'll cause a parse to immediately fail if it's indented incorrectly with respect to the "reference position" chosen by withPos.
(4) Yes, don't worry about these guys until you learn how to use Applicative style parsing in base Parsec. It's often a much cleaner, faster, simpler way of specifying parses. Sometimes they're even more powerful, but if you understand Monads then they're almost always completely equivalent.
(6) And this is the crux. The tools mentioned so far can only do indentation failure if you can describe your intended indentation using withPos. Quickly, I don't think it's possible to specify withPos based on the success or failure of other parses... so you'll have to go another level deeper. Fortunately, the mechanism that makes IndentParsers work is obvious—it's just an inner State monad containing SourcePos. You can use lift :: MonadTrans t => m a -> t m a to manipulate this inner state and set the "reference column" however you like.
Cheers!

Help with Shift/Reduce conflict - Trying to model (X A)* (X B)*

Im trying to model the EBNF expression
("declare" "namespace" ";")* ("declare" "variable" ";")*
I have built up the yacc (Im using MPPG) grammar, which seems to represent this, but it fails to match my test expression.
The test case i'm trying to match is
declare variable;
The Token stream from the lexer is
KW_Declare
KW_Variable
Separator
The grammar parse says there is a "Shift/Reduce conflict, state 6 on KW_Declare". I have attempted to solve this with "%left PrologHeaderList PrologBodyList", but neither solution works.
Program : Prolog;
Prolog : PrologHeaderList PrologBodyList;
PrologHeaderList : /*EMPTY*/
| PrologHeaderList PrologHeader;
PrologHeader : KW_Declare KW_Namespace Separator;
PrologBodyList : /*EMPTY*/
| PrologBodyList PrologBody;
PrologBody : KW_Declare KW_Variable Separator;
KW_Declare KW_Namespace KW_Variable Separator are all tokens with values "declare", "naemsapce", "variable", ";".
It's been a long time since I've used anything yacc-like, but here are a couple of suggestions that may or may not help.
It seems that you need a 2-token lookahead in this situation. The parser gets to the last PrologHeader, and it has to decide whether the next construct is a PrologHeader or a PrologBody, and it can't tell that from the KW_Declare. If there's a directive to increase lookahead in this situation, it will probably solve the problem.
You could also introduce context into your actions: rather than define PrologHeaderList and PrologBodyList, define PrologRuleList and have the actions throw an error if a header appears after a body. Ugly, but sometimes you have to do it: what appears simple in a grammar may not be simple in the generated parser.
A hackish approach might be to combine the tokens: rather than KW_Declare and KW_Variable, have your lexer recognize the space and use KW_Declare_Variable. Since both are keywords, you're not going to run into namespace collision problems.
The grammar at the top is regular so IIRC you can plot it out as a DFA (or a NDA and convert it to a DFA) and then convert the DFA to a grammar. It's bean a while so I'll leave the work as an exercise for the reader.

Resources