I have dataset which is built from 940 attributes and 450 instance and I'm trying to find the best classifier to get the best results.
I have used every classifier that WEKA suggest (such as J48, costSensitive, combinatin of several classifiers, etc..)
The best solution I have found is J48 tree with accuracy of 91.7778 %
and the confusion matrix is:
394 27 | a = NON_C
10 19 | b = C
I want to get better reuslts in the confution matrix for TN and TP at least 90% accuracy for each.
Is there something that I can do to improve this (such as long time run classifiers which scans all options? other idea I didn't think about?
Here is the file:
https://googledrive.com/host/0B2HGuYghQl0nWVVtd3BZb2Qtekk/
Please help!!
I'd guess that you got a data set and just tried all possible algorithms...
Usually, it is a good to think about the problem:
to find and work only with relevant features(attributes), otherwise
the task can be noisy. Relevant features = features that have high
correlation with class (NON_C,C).
your dataset is biased, i.e. number of NON_C is much higher than C.
Sometimes it can be helpful to train your algorithm on the same portion of positive and negative (in your case NON_C and C) examples. And cross-validate it on natural (real) portions
size of your training data is small in comparison with the number of
features. Maybe increasing number of instances would help ...
...
There are quite a few things you can do to improve the classification results.
First, it seems that your training data is severly imbalanced. By training with that imbalance you are creating a significant bias in almost any classification algorithm
Second, you have a larger number of features than examples. Consider using L1 and/or L2 regularization to improve the quality of your results.
Third, consider projecting your data into a lower dimension PCA space, say containing 90 % of the variance. This will remove much of the noise in the training data.
Fourth, be sure you are training and testing on different portions of your data. From your description it seems like you are training and evaluating on the same data, which is a big no no.
Related
Based on data that our business department supplied to us, I used the sklearn decision tree algorithm to determine the ROC_AUC for a binary classification problem.
The data consists of 450 rows and there are 30 features in the data.
I used 10 times StratifiedKFold repetition/split of training and test data. As a result, I got the following ROC_AUC values:
0.624
0.594
0.522
0.623
0.585
0.656
0.629
0.719
0.589
0.589
0.592
As I am new in machine learning, I am unsure whether such a variation in the ROC_AUC values can be expected (with minimum values of 0.522 and maximum values of 0.719).
My questions are:
Is such a big variation to be expected?
Could it be reduced with more data (=rows)?
Will the ROC_AUC variance get smaller, if the ROC_AUC gets better ("closer to 1")?
Well, you do k-fold splits to actually evaluate how well your model generalizes.
Therefore, from your current results I would assume the following:
This is a difficult problem, the AUCs are usually low.
0.71 is an outlier, you were just lucky there (probably).
Important questions that will help us help you:
What is the proportion of the binary classes? Are they balanced?
What are the features? Are they all continuous? If categorical, are they ordinal or nominal?
Why Decision Tree? Have you tried other methods? Logistic Regression for instance is a good start before you move on to more advanced ML methods.
You should run more iterations, instead of k fold use the ShuffleSplit function and run at least 100 iterations, compute the Average AUC with 95% Confidence Intervals. That will give you a better idea of how well the models perform.
Hope this helps!
Is such a big variation to be expected?
This is a textbook case of high variance.
Depending on the difficulty of your problem, 405 training samples may not be enough for it to generalize properly, and the random forest may be too powerful.
Try adding some regularization, by limiting the number of splits that the trees are allowed to make. This should reduce the variance in your model, though you might expect a potentially lower average performance.
Could it be reduced with more data (=rows)?
Yes, adding data is the other popular way of lowering the variance of your model. If you're familiar with deep learning, you'll know that deep models usually need LOTS of samples to learn properly. That's because they are very powerful models with an intrinsically high variance, and therefore a lot of data is needed for them to generalize.
Will the ROC_AUC variance get smaller, if the ROC_AUC gets better ("closer to 1")?
Variance will decrease with regularization and adding data, it has no relation to the actual performance "number" that you get.
Cheers
I have a dataset with thousand of sentences belonging to a subject. I would like to know what would be best to create a classifier that will predict a text as "True" or "False" depending on whether they talk about that subject or not.
I've been using solutions with Weka (basic classifiers) and Tensorflow (neural network approaches).
I use string to word vector to preprocess the data.
Since there are no negative samples, I deal with a single class. I've tried one-class classifier (libSVM in Weka) but the number of false positives is so high I cannot use it.
I also tried adding negative samples but when the text to predict does not fall in the negative space, the classifiers I've tried (NB, CNN,...) tend to predict it as a false positive. I guess it's because of the sheer amount of positive samples
I'm open to discard ML as the tool to predict the new incoming data if necessary
Thanks for any help
I have eventually added data for the negative class and build a Multilineal Naive Bayes classifier which is doing the job as expected.
(the size of the data added is around one million samples :) )
My answer is based on the assumption that that adding of at least 100 negative samples for author’s dataset with 1000 positive samples is acceptable for the author of the question, since I have no answer for my question about it to the author yet
Since this case with detecting of specific topic is looks like particular case of topics classification I would recommend using classification approach with the two simple classes 1 class – your topic and another – all other topics for beginning
I succeeded with the same approach for face recognition task – at the beginning I built model with one output neuron with high level of output for face detection and low if no face detected
Nevertheless such approach gave me too low accuracy – less than 80%
But when I tried using 2 output neurons – 1 class for face presence on image and another if no face detected on the image, then it gave me more than 90% accuracy for MLP, even without using of CNN
The key point here is using of SoftMax function for the output layer. It gives significant increase of accuracy. From my experience, it increased accuracy of the MNIST dataset even for MLP from 92% up to 97% for the same model
About dataset. Majority of classification algorithms with a trainer, at least from my experience are more efficient with equal quantity of samples for each class in a training data set. In fact, if I have for 1 class less than 10% of average quantity for other classes it makes model almost useless for the detection of this class. So if you have 1000 samples for your topic, then I suggest creating 1000 samples with as many different topics as possible
Alternatively, if you don’t want to create a such big set of negative samples for your dataset, you can create a smaller set of negative samples for your dataset and use batch training with a size of batch = 2x your negative sample quantity. In order to do so, split your positive samples in n chunks with the size of each chunk ~ negative samples quantity and when train your NN by N batches for each iteration of training process with chunk[i] of positive samples and all your negative samples for each batch. Just be aware, that lower accuracy will be the price for this trade-off
Also, you could consider creation of more generic detector of topics – figure out all possible topics which can present in texts which your model should analyze, for example – 10 topics and create a training dataset with 1000 samples per each topic. It also can give higher accuracy
One more point about the dataset. The best practice is to train your model only with part of a dataset, for example – 80% and use the rest 20% for cross-validation. This cross-validation of unknown previously data for model will give you a good estimation of your model accuracy in real life, not for the training data set and allows to avoid overfitting issues
About building of model. I like doing it by "from simple to complex" approach. So I would suggest starting from simple MLP with SoftMax output and dataset with 1000 positive and 1000 negative samples. After reaching 80%-90% accuracy you can consider using CNN for your model, and also I would suggest increasing training dataset quantity, because deep learning algorithms are more efficient with bigger dataset
For text data you can use Spy EM.
The basic idea is to combine your positive set with a whole bunch of random samples, some of which you hold out. You initially treat all the random documents as the negative class, and train a classifier with your positive samples and these negative samples.
Now some of those random samples will actually be positive, and you can conservatively relabel any documents that are scored higher than the lowest scoring held out true positive samples.
Then you iterate this process until it stablizes.
I use the TensorFlow high-level API tf.learn to train and evaluate a DNN classifier for a series of binary text classifications (actually I need multi-label classification but at the moment I check every label separately). My code is very similar to the tf.learn Tutorial
classifier = tf.contrib.learn.DNNClassifier(
hidden_units=[10],
n_classes=2,
dropout=0.1,
feature_columns=tf.contrib.learn.infer_real_valued_columns_from_input(training_set.data))
classifier.fit(x=training_set.data, y=training_set.target, steps=100)
val_accuracy_score = classifier.evaluate(x=validation_set.data, y=validation_set.target)["accuracy"]
Accuracy score varies roughly from 54% to 90%, with 21 documents in the validation (test) set which are always the same.
What does the very significant deviation mean? I understand there are some random factors (eg. dropout), but to my understanding the model should converge towards an optimum.
I use words (lemmas), bi- and trigrams, sentiment scores and LIWC scores as features, so I do have a very high-dimensional feature space, with only 28 training and 21 validation documents. Can this cause problems? How can I consistently improve the results apart from collecting more training data?
Update: To clarify, I generate a dictionary of occurring words and n-grams and discard those that occur only 1 time, so I only use words (n-grams) that exist in the corpus.
This has nothing to do with TensorFlow. This dataset is ridiculously small, thus you can obtain any results. You have 28 + 21 points, in a space which has "infinite" amount of dimensions (there are around 1,000,000 english words, thus 10^18 trigrams, however some of them do not exist, and for sure they do not exist in your 49 documents, but still you have at least 1,000,000 dimensions). For such problem, you have to expect huge variance of the results.
How can I consistently improve the results apart from collecting more training data?
You pretty much cannot. This is simply way to small sample to do any statistical analysis.
Consequently the best you can do is change evaluation scheme instead of splitting data to 28/21 do 10-fold cross validation, with ~50 points this means that you will have to run 10 experiments, each with 45 training documents and 4 testing ones, and average the result. This is the only thing you can do to reduce the variance, however remember that even with CV, dataset so small gives you no guarantees how well your model will actualy behave "in the wild" (once applied to never seen before data).
So I have a set of data, 1900 rows and 22 columns. 21 column is just numbers but that one crucial that I want to train the data on has 3 stages: a,b, and c.
I have tried both decision trees/jungles, and neural networks and no matter how I set them up I can't get more than 55% precision.
Usually it's around 50% accuracy and the best I was ever able to get was 55% overall accuracy and around 70% average.
Should I even use NN on a such small dataset? As I said I tried with other ML algorithms but they don't yield anything better.
I think that there is no clear answer to your question. Low accuracy score may come from a few reasons. I will state some of them in the following points :
When you use decision trees / neural networks - low accuracy may be a result of a wrong setup of metaparameters (like maximum height of a tree or number of trees in DT or wrong topology or data preparation in NN case). What I advise you is to use a grid or random search for both NN and DT to look for the best metaparameters for your algorithm (in case of "static" (not sequential data) packages like e.g. h20 in R or Scikit-learn in Python may do a great job) and in neural network case - normalize your data properly (e.g. subtract mean and divide by standard deviation every x column of your data).
Your dataset might be inconsistent. If e.g. your data has not a property that there exists a functional dependency between x and y (what means that y = f(x) for some f) then what is learnt during a training session is a probability that given x - your example belong to some specified class. This inconsistency might seriously harm your accuracy. What I advice you in this case is to try specify if that phenomenon occurs and then e.g. try to segmentate your data to solve the problem.
Your data set might be simply too small. Try to get more data in this case.
I have a data set with 150 rows, 45 features and 40 outputs. I can well overfit the data but I cannot obtain acceptable results for my cross validation set.
With 25 hidden layers and quite large number of iterations, I was able to get ~94% accuracy on my training set; put a smile on my face. But cross validation result turned out to be less than 15%.
So to mitigate overfitting I started playing with the regularization parameter (lambda) and also the number of hidden layers. The best result (CV) I could get was 24% on training set and 34% on the training set with lambda=1, 70 hidden layers and 14000 iterations. Increasing the number of iters also made it worse; I can't understand why I cannot improve CV results with increased lambda and iters?
Here is the lambda-hiddenLayer-iter combinations I have tried:
https://docs.google.com/spreadsheets/d/11ObRTg05lZENpjUj4Ei3CbHOh5mVzF7h9PKHq6Yn6T4/edit?usp=sharing
Any suggested way(s) of trying smarter regulationParameter-hiddenLayer-iters combinations? Or other ways of improving my NN? I using my matlab code from Andrew Ng's ML class (uses backpropagation algorithm.)
It's very hard to learn anything from just 150 training examples with 45 features (and if I read your question right, 40 possible output classes). You need far more labeled training examples if you want to learn a reasonable classifier - probably tens or hundreds of thousands if you do have 40 possible classes. Even for binary classification or regression, you likely need thousands of examples of you have 45 meaningful features.
Some suggestions:
overfitting occurs primarily when the structure of the neural network is too complex for the problem in hand. If the structure of the NN isn't too complex, increasing the number of iterations shouldn't decrease accuracy of prediction
70 hidden layers is quite a lot, you may try to dramatically decrease the number of hidden layers (to 3-15) and increase the number of iterations. It seems from your file that 15 hidden layers are fine in comparison to 70 hidden layers
while reducing the number of hidden layers you may vary the number of neurons in hidden layers (increase/decrease) and check how the results are changing
I agree with Logan. What you see in your dataset makes perfect sense. If you simply train a NN classifier with 45 features for 40 classes you will get great accuracy because you have more features than output-classes. So the model can basically "assign" each feature to one of the output classe, but the resulting model will be highly over-fitted and probably not represent whatever you are modeling. Your significantly lower cross-validation results seem to be right.
You should rethink your approach: Why do you have 40 classes? Maybe you can change your problem into a regressive problem instead of a classification problem? Also try to look into some other algorithms like Random Forrest for example. Or decrease the number of features significantly.