Related
One old application started to consume memory a lot after server update. Memory usage seems to rise with out limit until program hangs.
According to FastMM4 and EurekaLog, there's no memory leak (except 28 bytes), so I assume all memory is freed when application is shutdown.
Are there any tools or strategies suitable for tracking this kind of memory problem?
Since September 2012, there is a very simple and comfortable way to find this type of "run-time only" memory leaks.
FastMM4991 introduced a new method, LogMemoryManagerStateToFile:
Added the LogMemoryManagerStateToFile call. This call logs a summary of
the memory manager state to file: The total allocated memory, overhead,
efficiency, and a breakdown of allocated memory by class and string type.
This call may be useful to catch objects that do not necessarily leak, but
do linger longer than they should.
To discover the leak at run time, you only need these steps
add a call to LogMemoryManagerStateToFile('memory.log', '') in a place where it will be called in intervals
run the application
open the log file with a tail program (for example BareTail), which will auto-refresh when the file content changes
watch the first lines of the file, they will contain the memory allocations which occupy the highest amount of memory
if you see a class or memory type constantly has a growing number of instances, this can be the reason of your leak
The growing memory consumption is an application issue. It is not a bug, which can discover FastMM4 or EurekaLog. As from they point of view - application just correctly uses the memory.
Using AQTime, MemProof (hard to find, D7 is last supported version (?)), SleuthQA (similar to MemProof) or similar memory profilers, you can track the memory usage outside of application in real-time.
Using FastMM4, GetMemoryManagerState / GetMemoryManagerUsageSummary you can track memory usage from application. Output this information into trace file and analyze it after run. Or make simple wrapping function for one of the above procedures, which will return curent memory usage. And call it from IDE Debugger Evalute / Modify, add to Watches or call OutputDebugString, and see the current memory usage.
Note, if memory is eated by some DLL then you may not see her memory usage using (3). Use (2).
Analyzing the memory usage and the tasks performed by the application, you may discover what leads to raised memory usage.
AQTime (a commercial tool which is quite expensive) can report your memory usage, down to the line of source code that allocated each object. In the case of very large memory usage scenarios, you might want the AQTime functionality that can show the number of objects and the size (total plus individual instance size) for each object. AQTime worked great for me, starting with Delphi 7, and all later versions, including your version (2006) and the latest versions (XE and XE2).
As the program memory usage grows, AQTime can be used to grab "snapshots" of the runtime heap, you can use to understand memory usage of your application; What is being created, and how many of each object exists. Even when no leaks exist, understanding the runtime behaviour of your application in terms of the objects it creates and manages, is very important, and AQTime is the most powerful tool I know of for Delphi users.
If you are willing to upgrade to Delphi XE/XE2, you might have an included light version of AQTime already, if so, check it out. If not, I recommend you try their demo. I am unaware of any free or open source alternatives that can provide the same functionality.
Lesser functionality could be cobbled together manually by writing lots of trace messages, or using the FastMM full-debug-mode. If you could write a complete dump of your memory usage into a very large file, you might be able to write some tools to parse, and create a summary. The problem I have with FastMM in this case, is that you will be drowned in detail information, without the ability to extract exactly the summary information that helps you understand your situation. So, you can try to write your own tool to summarize the memory usage. In one application I had that used a series of components that I knew would use a lot of memory, I wrote a dialog box into my application that showed current memory usage by these large memory-blob-of-data objects.
Have you ever think about the Leak that is causing the IDE... it is so huge!!!
In my case (2GB of RAM) i do the next...
1. Open the IDE
2. Leave it minimized for near six hours
3. See how Physical memory is getting used
The result:
While IDE is oppened (remember i also do the test having it minimized) it is getting more and more RAM... till no more ram free.
It gets all 2GB RAM + all Pagefile hard disk space (i have it configured to a mas of 4GB)
In less that six hours (doing nothing on IDE) it tries to use more than 6GB.
That is called a Memory Leak casused by the IDE... i do not type any letter on IDE, do not compile anything, do not even open any project... just open IDE and minimize it... leave the computer without doing anything on it for about six hours and IDE is consuming 6GB of memory.
Of course, after that, the IDE start with annoying messages of SystemOutOfMemory... and i must kill it... then all that 6GB are freed!!!
When on the hell will this get fixed?
Please note i have all patches applied, i also tested without applying each patch/hotfix, etc...
The best i got was dissabling some options on Tools, like the one that underlines bad code, etc... so why on the hell that option has any influence... i am not typing anything on the IDE (on the tests)... and if i have it dissabled the memory leak gets reduced a lot...
Of course, if i use the IDE (write code on an opened project) without even compiling / running it... the thing goes much more worst... memory leak upto 6GB can got reached on less than an hour, sometimes occurs after 15 minutes of Copy/Paste source code.
Seems there will not be a solution in a short time!!!
So i got the next solution that works perfect:
-Close the IDE an reopen it each 15 minutes or less
Ugly solution, i know... but works!!!
I had an issue recently (see my last question) that led me to take a closer look at the memory management in my Delphi application. After my first exploration, I have two questions.
I've started playing with the FastMMUsageTracker, and noticed the following. When I open a file to be used by the app (which also creates a form etc...), there is a significant discrepancy between the variation in available virtual memory for the app, and the variation in "FastMM4 allocated" memory.
First off, I'm a little confused by the terminology: why is there some FastMM-allocated memory and some "System-allocated" (and reserved) memory? Since FastMM is the memory manager, why is the system in charge of allocating some of the memory?
Also, how can I get more details on what objects/structures have been allocated that memory? The VM chart is only useful in showing the amount of memory that is "system allocated", "system reserved", or "FastMM allocated", but there is no link to the actual objects requiring that memory. Is it possible for example to get a report, mid-execution, similar to what FastMM generates upon closing the application? FastMM obviously stores that information somewhere.
As a bonus for me, if people can recommend a good reference (book, website) on the subject, it would also be much appreciated. There are tons of info on the net, but it's usually very case-specific and experts-oriented.
Thanks!
PS: This is not about finding leaks, no problem there, just trying to understand memory management better and be pre-emptive for the future, as our application uses more and more memory.
Some of your questions are easy. Well, one of them anyway!
Why is there some FastMM-allocated
memory and some "System-allocated"
(and reserved) memory? Since FastMM is
the memory manager, why is the system
in charge of allocating some of the
memory?
The code that you write in Delphi is only part of what runs in your process. You use 3rd party libraries in the form of DLLs, most notably the Windows API. Anytime you create a Delphi form, for example, there are a lot of windows objects behind it that consume memory. This memory does not get allocated by FastMM and I presume is what is termed "system-allocated" in your question.
However, if you want to go any deeper then this very rapidly becomes an extremely complex topic. If you do want to go deeper into the implementation of Windows memory management then I think you need to consult a serious reference source. I suggest Windows Internals by Mark Russinovich, David Solomon and Alex Ionescu.
First off, I'm a little confused by the terminology: why is there some FastMM-allocated memory and some "System-allocated" (and reserved) memory? Since FastMM is the memory manager, why is the system in charge of allocating some of the memory?
Where do you suppose FastMM gets the memory to allocate? It comes from the system, of course.
When your app starts up, FastMM gets a block of memory from the system. When you ask for some memory to use (whether with GetMem, New, or TSomething.Create), FastMM tries to give it to you from that first initial block. If there's not enough there, FastMM asks for more (in one block if possible) from the system, and returns a chunk of that to you. When you free something, FastMM doesn't return that memory to the OS, because it figures you'll use it again. It just marks it as unused internally. It also tries to realign unused blocks so that they're as contiguous as possible, in order to try not to have to go back to the OS for more needlessly. (This realignment isn't always possible, though; that's where you end up with memory fragmentation from things like multiple resizing of dynamic arrays, lots of object creates and frees, and so forth.)
In addition to the memory FastMM manages in your app, the system sets aside room for the stack and heap. Each process gets a meg of stack space when it starts up, as room to put variables. This stack (and the heap) can grow dynamically as needed.
When your application exits, all of the memory it's allocated is released back to the OS. (It may not appear so immediately in Task Manager, but it is.)
Is it possible for example to get a report, mid-execution, similar to what FastMM generates upon closing the application?
Not as far as I can tell. Because FastMM stores it somewhere doesn't necessarily mean there's a way to access it during runtime from outside the memory manager. You can look at the source for FastMMUsageTracker to see how the information is retrieved (using GetMemoryManagerState and GetMemoryMap, in the RefreshSnapshot method). The source to FastMM4 is also available; you can look and see what public methods are available.
FastMM's own documentation (in the form of the readme files, FastMM4Options.inc comments, and the FastMM4_FAQ.txt file) is useful to some extent in explaining how it works and what debugging options (and information) is available.
For a detailed map of what memory a process is using, try VMMAP from www.sysinternals.com (also co-authored by Mark Russinovich, mentioned in David's answer). This also allows you to see what is stored in some of the locations (type control-T when a detail line is selected).
Warning: there is much more memory in use by your process than you might think. You may need to read the book first.
Question:
Is there an easy way to get a list of types of resources that leak in a running application? IOW by connecting to an application ?
I know memproof can do it, but it slows down so much that the application won't even last a minute. Most taskmanager likes can show the number, but not the type.
It is not a problem that the check itself is catastrophic (halts the app process), since I can check with a taskmgr if I'm getting close (or at least I hope)
Any other insights on resource leak hunting (so not memory) is also welcomed.
Background:
I've an Delphi 7/2006/2009 app (compiles with all three) and after about a few week it starts acting funny. However only on one of the places it runs, on several other systems it runs till the power goes out.
I've tried to put in some debug code to narrow the problem down. and found out that the exception is EOutofResources on a save of a file. (the file save can happen thousands of times a day).
I have tried to reason out memory leaks (with fastmm), but since the dataflow is quite high (60MByte/s from gigabit industrial camera's), I can only rule out "creeping" memory leaks with fastmm, not quick flashes of memoryleaks that exhaust memory around the time it happens. If something goes wrong, the app fills memory in under half a minute.,
Main suspects are filehandles that are somehow left on some error and TMetafiles (which are streamed to these files). Minor suspects are VST, popupmenu and tframes
Updates:
Another possible tip: It ran fine for two years with D7, and now the problems are with Turbo Explorer (which I use for stable projects not converted to D2009 ).
Paul-Jan: Since it only happens once a week (and that can happen at night), information acquisition is slow. Which is why I ask this question, need to combine stuff for when I'm there thursday. In short: no I don't know 100% sure. I intend to bring the entire Systemtools collection to see if I can find something (because then it will be running for days). There is also a chance that I see open files. (maybe should try to find some mingw lsof and schedule it)
But the app sees very little GUI action (it is an machine vision inspection app), except screen refresh +/- 15/s which is tbitmap stretchdraw + tmetafile, but I get this error when saving to disk (TFileStream) handles are probably really exhausted. However in the same stream, TMetafile is also savetostreamed, something which later apps don't have anymore, and they can run from months.
------------------- UPDATE
I've searched and searched and searched, and managed to reproduce the problems in-vitro two or three times. The problems happened when memusage was +/- 256MB (the systems have 2GB), user objects 200, gdi objects 500, not one file more open than expected ).
This is not really exceptional. I do notice that I leak small amounts of handles, probably due to reparenting frames (something in the VCL seems to leak HPalette's), but I suspect the core cause is a different problem. I reuse TMetafile, and .clear it inbetween. I think clearing the metafile doesn't really (always?) resize the resource, eventually each metafile in the entire pool of tmetafile at maximum size, and with 20-40+ tmetafiles (which can be several 100ks each) this will hit the desktop heap limit.
That's theory, but I'll try to verify this by setting the desktop limit to 10MB at the customers, but it will be several weeks before I have confirmation if this changes anything. This theory also confirms why this machine is special (it's possible that this machine naturally has slightly larger metafiles on average). Occasionally freeing and recreating a tmetafile in the pool might also help.
Luckily all these problems (both tmetafile and reparenting) have already been designed out in newer generations of the apps.
Due to the special circumstances (and the fact that I have very limited test windows), this is going to be a while, but I decided to accept the desktop heap as an example for now (though the GDILeaks stuff was also somewhat useful).
Another thing that the audit revealed GDI-types usage in a thread (though only saving tmetafiles (that weren't used or connected otherwise) to streams.
------------- Update 2.
Increasing the desktop limit only seemed to minorly increase the time till the problem occurred.
Unfortunately, I won't be able to follow up on this further, since the machines were updated to a newer version of the framework that doesn't have the problem.
In summary I can only state what the three core modifications were going from the old to the new framework:
I no longer change screens by reparenting frames. I now work with forms that I hide and show. I changed this since I also had very rare crashes or exceptions (that could be clicked away) due to this. The crashes were all while operating the GUI though, not spontaneously like the main problem
The routine where the crash happened dealt with TMetafile. TMetafile has been designed out, and replace by a simpler own made format. (basically arrays with Opengl vertices)
Drawing no longer happened with tbitmap with a tmetafile overlay strechdrawn over it, but using OpenGL.
Of course it could be something else too, that got changed in the rewrite of the above parts, fixing some very nasty detail bug. It would have to be an extremely bad one, since I analysed the above system as much as I could.
Updated nov 2012 after some private mail discussion: In retrospect, the next step would have been adding a counter to the metafiles objects, and simply reinstantiate them every x * 1000 uses or so, and see if that changes anything. If you have similar problems, try to see if you can somewhat regularly destroy and reinitialize long living resources that are dynamically allocated.
There is a slim chance that the error is misleading. The VCL naively reports EOutOfResources if it is unable to obtain a DC for a window (see TWinControl.GetDeviceContext in Controls.pas).
I say "naively" because there are other reasons why GetDC() might return a NULL handle and the VCL should report the OS error, not assume an out of resources condition (there is a Windows version check required for this to be reliably possible, but the VCL could and should take of that too).
I had a situation where I was getting the EOutOfResources error as the result of a window handle becoming invalid. Once I'd discovered the true problem, finding the cause and fixing it was simple, but I wasted many, many hours trying to find a non-existent resource leak.
If possible I would examine the stack trace leading to this exception - if it is coming from TWinControl.GetDeviceContext then the problem may not be what you think (it's impossible to say what it might be of course, but eliminating the impossible is always the first step toward discovering the solution, no matter how improbable).
If they are GDI handle leaks you can have a look at MSDN Magazine January 2003 which uses the tool GDILeaks. Other tools are GDIObj or GDIView. Also see here.
Another source of EOutOfResources could be that the Desktop Heap is full. I've had that issue on busy terminal servers with large screens.
If there are lots of file handles you are leaking you could check out Process Explorer and have a look at the open file handles of your process and see any out of the ordinary. Or use WinDbg with the !htrace command.
I've run into this problem before. From what I've been able to tell, Delphi may throw an EOutOfResources any time the Windows API returns ERROR_NOT_ENOUGH_MEMORY, and (as the other answers here discuss) Windows may return ERROR_NOT_ENOUGH_MEMORY for a variety of conditions.
In my case, EOutOfResources was being caused by a TBitmap - in particular, TBitmap's call to CreateCompatibleBitmap, which it uses with its default PixelFormat of pfDevice. Apparently Windows may enforce fairly strict systemwide limits on the memory available for device-dependent bitmaps (see, e.g, this discussion), even if your system otherwise has plenty of memory and plenty of GDI resources. (These systemwide limits are apparently because Windows may allocate device-dependent bitmaps in the video card's memory.)
The solution is simply to use device-independent bitmaps (DIBs) instead (although these may not offer quite as good of a performance). To do this in Delphi, set TBitmap.PixelFormat to anything other than pfDevice. This KB article describes how to pick the optimal DIB format for a device, although I generally just use pf32Bit instead of trying to determine the optimal format for each of the monitors the application is displayed on.
Most of the times I saw EOutOfResources, it was some sort of handle leak.
Did you try something like MadExcept?
--jeroen
"I've tried to put in some debug code to narrow the problem down. and found out that the exception is EOutofResources on a save of a file. (the file save can happen thousands of times a day)."
I'm shooting in the dark here, but could it be that you're using the Windows API to (GetTempFileName) create a temp file and you're blowing out some file system indexes or forgetting to close a file handle?
Either way, I do agree that with your supposition about it being a file handle problem. That seems to be the most likely thing given your symptoms and diagnosis.
Also try to check handle count for the application with Process Explorer from SysInternals. Handle leaks can be very dangerous and they build slowly through time.
I am currently having this problem, in software that is clearly not leaking any handles in my own code, so if there are leaks they could be happening in a component's source code or the VCL sourcecode itself.
The handle count and GDI and user object counts are not increasing, nor is anything being created. Deltic's answer shows corner cases where the message is kind of a red-herring, and Allen suggests that even a file write can cause this error.
So far, The best strategy I have found for hunting them down is to use either JCL JCLDEBUG stack tracebacks, or the exception report save features in MadExcept to generate the context information to find out what is actually failing.
Secondly, AQTime contains many tools to help you, including a resource profiler that can keep the links between where the code that created the resources is, and how it was called, along with counts of the total numbers of handles. It can grab results MID RUN and so it is not limited to detecting unfreed resources after you exit. So, run AQTime, do a results capture in mid run, wait several hours, and capture again, and you should have two points in time to compare handle counts. Just in case it is the obvious thing. But as Deltics wisely points out, this exception class is raised in cases where it probably shouldn't have been.
I spent all of today chasing this issue down. I found plenty of helpful resources pointing me in the direction of GDI, with the fact that I'm using GDI+ to produce high-speed animations directly onto the main form via timer/invalidate/onpaint (animation performed in separate thread). I also have a panel in this form with some dynamically created controls for the user to make changes to the animation.
It was extremely random and spontaneous. It wouldn't break anywhere in my code, and when the error dialog appeared, the animation on the main form would continue to work. At one point, two of these errors popped up at the same time (as opposed to sequential).
I carefully observed my code and made sure I wasn't leaking any handles related to GDI. In fact, my entire application tends to keep less than 300 handles, according to Task Manager. Regardless, this error would randomly pop up. And it would always correspond with the simplest UI related action, such as just moving the mouse over a standard VCL control.
Solution
I believe I have solved it by changing the logic to performing the drawing within a custom control, rather than directly to the main form as I had been doing before. I think the fact that I was rapidly drawing on the same form canvas which shared other controls, somehow they interfered. Now that it has its own dedicated canvas to draw on, it seems to be perfectly fixed.
That is with about 1 hour of vigorous testing at least.
[Fingers crossed]
There is chance were a heavy weight application that needs to be launched in a low configuration system.. (Especially when the system has too less memory)
Also when we have already opened lot of application in the system & we keep on trying opening new new application what would happen?
I have only seen applications taking time to process or hangs up for sometime when I try operating with it in low config. system with low memory and old processors..
How it is able to accomodate many applications when the memory is low..? (like 128 MB or lesser..)
Does it involves any paging or something else..?
Can someone please let me know the theory behind this..!
"Heavyweight" is a very vague term. When the OS loads your program, the EXE is mapped in your address space, but only the code pages that run (or data pages that are referenced) are paged in as necessary.
You will likely get horrible performance if pages need to constantly be swapped as the program runs (aka many hard page faults), but it should work.
Since your commit charge is near the commit limit, and the commit limit will likely have no room to grow, you will also likely recieve many malloc()/VirtualAlloc(..., MEM_COMMIT)/HeapAlloc()/{Local|Global}Alloc() failures so you need to watch the return codes in your program.
Some keywords for search engines are: paging, swapping, virtual memory.
Wikipedia has an article called Paging (Redirected from Swap space).
There is often the use of virtual memory. Virtual memory pages are mapped to physical memory if they are used. If a physical page is needed and no page is available, another is written to disk. This is called swapping and that explains why crowded systems get slow and memory upgrades have positive effects on performance.
This is either ridiculously simple, or too complex . . . .
In our application there is a form that loads some data from the database and displays it in the grid (putting it simply). When the data is refreshed the total memory usage climbs by about 50K (depending on how much data is displayed no doubt). Sounds like a memory leak, but when we shut down the application, FastMM is set with ReportMemoryLeakOnShutDown := True, and it doesn't report any abnormal memory leaks.
So it appears we have a memory bubble or bag. Something that is accumulating more memory each time it is run. Like a TList that keeps getting new items added to it, but the old ones never get removed. Then in the shutdown process all the items get destroyed. The rows displayed in the grid do not increase, but there are a lot of object lists behind the scenes that make this work, so it could be anywhere.
So my question is if anyone knows of a good trick for finding out what parts of an application are using how much memory . . . . I can think of lots of tedious ways of doing it (which I am in the process of doing - checking each list I can find), so I am hoping someone has a trick or technique I have not thought of.
Thanks in advance!
Update: Every refresh results in an additional 10-50K of memory being used. The users are reporting that eventually the application stops responding. It certainly acts like a memory leak, but FastMM (the memory manager) does not see anything leaking. I'll try some other memory tools . . .
Just F8 through the critical part and look at the process usage graph (Process Explorer from Mark Russinovich works great for that). When you find the culprit method, repeat the process but descend into that method.
Tools like AQTime can report difference in memory/object usage between snapshots. This might help you find out what keeps growing.
It looks like there is some memory allocated via custom AllocMem() calls, bypassing FastMM.
This can be midas. Andreas has a solution for this
Or some other InitXXX WinAPI call that allocates something, without freeing. Or some other third-party or windows dll used by project.
Does this happen every time you refresh the data or only the first time? If it's only the first time it could be that the system just reserves the memory for your application, despite the fact that it's not used at this time. (Maybe at some point the old and new data existed simultaneously in memory?)
There are many tools which provide you with informations about memory leaks, have you tried a different one?
Im not a FastMM expert, but I suppose that after a memory manager get memory, after you free the objects/components, it holds for future use with some zeroes or flag, I dont know, avoiding the need to ask the OS for more memory any time, like a cache.
How about you create the same form/open same data, N times in a row?
Will increase 50K each time?
Once I had the same problem. The application was certainly leaking, but I got no report on shutdown. The reason for this was that I had included sharemem in the uses-section of the project.
Have you tried the full FastMM-version? I have found that tweaking its settings gives me a more verbose information of memory usage.
As Lars Truijens mentioned, AQTime provides a live memory consumption graph, so in runtime, you can see what objects are using more memory whenever you refresh data.