Histogram comparision - opencv

Is it possible to compare two intensity histograms (derived from gray-scale images) and obtain a likeness factor? In other words, I'm trying to detect the presence or absence of an soccer ball in an image. I've tried feature detection algorithms (such as SIFT/SURF) but they are not reliable enough for my application. I need something very reliable and robust.
Many thanks for your thoughts everyone.

This answer (Comparing two histograms) might help you. Generally, intensity comparisons are quite sensitive as e.g. white during day time is different from white during night time.
I think you should be able to derive something from compareHist() in openCV (http://docs.opencv.org/doc/tutorials/imgproc/histograms/histogram_comparison/histogram_comparison.html) to suit your needs if compareHist() does fit your purpose.
If not, this paper http://www.researchgate.net/publication/222417618_Tracking_the_soccer_ball_using_multiple_fixed_cameras/file/32bfe512f7e5c13133.pdf
tracks the ball from multiple cameras and you might get some more ideas from that even though you might not be using multiple cameras.

As kkuilla have mentioned, there is an available method to compare histogram, such as compareHist() in opencv
But I am not certain if it's really applicable for your program. I think you will like to use HoughTransfrom to detect circles.
More details can be seen in this paper:
https://files.nyu.edu/jb4457/public/files/research/bristol/hough-report.pdf
Look for the part with coins for the circle detection in the paper. I did recall reading up somewhere before of how to do ball detection using Hough Transform too. Can't find it now. But it should be similar to your soccer ball.
This method should work. Hope this helps. Good luck(:

Related

OpenCV compare similar hand drawn images

I am trying to compare two mono-chrome, basic hand drawn images, captured electronically. The scale may be different but the essences of the image is the same. I want to compare one hand drawn image to a save library of images and get a relative score of how similar they are. Think of several basic geometric shapes, lines, and curves that make up a drawing.
I have tried several techniques without much luck. Pixel based comparisons are too exact. I have tried scaling and cropping images and that did not get accurate results.
I have tried OpenCV with C# and have had a little success. I have experimented with SURF and it works for a few images, but not others that the eye can tell are very similar.
So now my question: Are there any examples of using openCV or commercial software that can support comparing drawings that are not exact? I prefer C# but I am open to any solutions.
Thanks in advance for any guidance.
(I have been working on this for over a month and have searched the internet and Stack Overflow without success. I of course could have missed something)
You need to extract features from these images and after that using a basic euclidean distance would be enough to calculate similarity. But hand writtend drawn thins are not easy to extract features. For example, companies that work on face recognition generally have much less accuracy on drawn face portraits.
I have a suggestion for you. For a machine learning homework, one of my friends got the signature recognition assingment. I do not fully know how he did it with a high accuracy, but I know feature extraction part. Firtstly he converted it to binary image. And than he calculated the each row's black pixel count. Than he used that features to train a NN or etc.
So you can use this similar approach to extract features. Than use a euclidean distance to calculate similarities.

Detecting "city" background versus "desert" background in images using image processing/computer vision

I'm searching for algorithms/methods that are used to classify or differentiate between two outdoor environments. Given an image with vehicles, I need to be able to detect whether the vehicles are in a natural desert landscape, or whether they're in the city.
I've searched but can't seem to find relevant work on this. Perhaps because I'm new at computer vision, I'm using the wrong search terms.
Any ideas? Is there any work (or related) available in this direction?
I'd suggest reading Prince's Computer Vision: Models, Learning, and Inference (free PDF available). It covers image classification, as well as many other areas of CV. I was fortunate enough to take the Machine Vision course at UCL which the book was designed for and it's an excellent reference.
Addressing your problem specifically, a simple MAP or MLE model on pixel colours will probably provide a reasonable benchmark. From there you could look at more involved models and feature engineering.
Seemingly complex classifications similar to "civilization" vs "nature" might be able to be solved simply with the help of certain heuristics along with classification based on color. Like Gilevi said, city scenes are sure to contain many flat lines and right angles, while desert scenes are dominated by rolling dunes and so on.
To address this directly, you could use OpenCV's hough - lines algorithm on the images (tuned for this problem of course) and look at:
a) how many lines are fit to the image at a given threshold
b) of the lines that are fit what is the expected angle between two of them; if the angles are uniformly distributed then chances are its nature, but if the angles are clumped up around multiples of pi/2 (more right angles and straight lines) then it is more likely to be a cityscape.
Color components, textures, and degree of smoothness(variation or gradient of image) may differentiate the desert and city background. You may also try Hough transform, which is used for line detection that can be viewed as city feature (building, road, bridge, cars,,,etc).
I would recommend you this research very similar with your project. This article presents a comparison of different classification techniques to obtain the scene classifier (urban, highway, and rural) based on images.
See my answer here: How to match texture similarity in images?
You can use the same method. I already solved in the past problems like the one you described with this method.
The problem you are describing is that of scene categorization. Search for works that use the SUN database.
However, you only working with two relatively different categories, so I don't think you need to kill yourself implementing state-of-the-art algorithms. I think taking GIST features + color features and training a non-linear SVM would do the trick.
Urban environments is usually characterized with a lot of horizontal and vertical lines, GIST captures that information.

single person tracking from video sequence

As a part of my thesis work, I need to build a program for human tracking from video or image sequence like the KTH or IXMAS dataset with the assumptions:
Illumination remains unchanged
Only one person appear in the scene
The program need to perform in real-time
I have searched a lot but still can not find a good solution.
Please suggest me a good method or an existing program that is suitable.
Case 1 - If camera static
If the camera is static, it is really simple to track one person.
You can apply a method called background subtraction.
Here, for better results, you need a bare image from camera, with no persons in it. It is the background. ( It can also be done, even if you don't have this background image. But if you have it, better. I will tell at end what to do if no background image)
Now start capture from camera. Take first frame,convert both to grayscale, smooth both images to avoid noise.
Subtract background image from frame.
If the frame has no change wrt background image (ie no person), you get a black image ( Of course there will be some noise, we can remove it). If there is change, ie person walked into frame, you will get an image with person and background as black.
Now threshold the image for a suitable value.
Apply some erosion to remove small granular noise. Apply dilation after that.
Now find contours. Most probably there will be one contour,ie the person.
Find centroid or whatever you want for this person to track.
Now suppose you don't have a background image, you can find it using cvRunningAvg function. It finds running average of frames from your video which you use to track. But you can obviously understand, first method is better, if you get background image.
Here is the implementation of above method using cvRunningAvg.
Case 2 - Camera not static
Here background subtraction won't give good result, since you can't get a fixed background.
Then OpenCV come with a sample for people detection sample. Use it.
This is the file: peopledetect.cpp
I also recommend you to visit this SOF which deals with almost same problem: How can I detect and track people using OpenCV?
One possible solution is to use feature points tracking algorithm.
Look at this book:
Laganiere Robert - OpenCV 2 Computer Vision Application Programming Cookbook - 2011
p. 266
Full algorithm is already implemented in this book, using opencv.
The above method : a simple frame differencing followed by dilation and erosion would work, in case of a simple clean scene with just the motion of the person walking with absolutely no other motion or illumination changes. Also you are doing a detection every frame, as opposed to tracking. In this specific scenario, it might not be much more difficult to track either. Movement direction and speed : you can just run Lucas Kanade on the difference images.
At the core of it, what you need is a person detector followed by a tracker. Tracker can be either point based (Lucas Kanade or Horn and Schunck) or using Kalman filter or any of those kind of tracking for bounding boxes or blobs.
A lot of vision problems are ill-posed, some some amount of structure/constraints, helps to solve it considerably faster. Few questions to ask would be these :
Is the camera moving : No quite easy, Yes : Much harder, exactly what works depends on other conditions.
Is the scene constant except for the person
Is the person front facing / side-facing most of the time : Detect using viola jones or train one (adaboost with Haar or similar features) for side-facing face.
How spatially accurate do you need it to be, will a bounding box do it, or do you need a contour : Bounding box : just search (intelligently :)) in neighbourhood with SAD (sum of Abs Differences). Contour : Tougher, use contour based trackers.
Do you need the "tracklet" or only just the position of the person at each frame, temporal accuracy ?
What resolution are we speaking about here, since you need real time :
Is the scene sparse like the sequences or would it be cluttered ?
Is there any other motion in the sequence ?
Offline or Online ?
If you develop in .NET you can use the Aforge.NET framework.
http://www.aforgenet.com/
I was a regular visitor of the forums and I seem to remember there are plenty of people using it for tracking people.
I've also used the framework for other non-related purposes and can say I highly recommend it for its ease of use and powerful features.

how to recognize the object I detect in video frames is a people or a car

I have a problem to detect object in images or video frames.
I have a task that is detect some people or something who enter into the sight of web camera, and then my system will be alarm.
Next step is recognize which kind of thing the object is, in this phase I know use Hough transform to detect line, circle, even rectangle. But when a people come into the sight of camera, people's profile is more complex than line, circle and rectangle. How can i recognize the object is people not a car.
I need help to know that.
thanks in advance
I suggest you look at the paper "Histograms of Oriented Gradients for Human Detection" by Dalal and Triggs. They used Histograms of Oriented Gradients to detect humans in images
I think one method is to use Bayesian analysis on your image and see how that matches with a database of known images. I believe some people run a wavelet transform to emphasize more noticeable features.

An algorithm for a drawing and painting robot - any tips?

Algorithm for a drawing and painting robot -
Hello
I want to write a piece of software which analyses an image, and then produces an image which captures what a human eye perceives in the original image, using a minimum of bezier path objects of varying of colour and opacity.
Unlike the recent twitter super compression contest (see: stackoverflow.com/questions/891643/twitter-image-encoding-challenge), my goal is not to create a replica which is faithful to the image, but instead to replicate the human experience of looking at the image.
As an example, if the original image shows a red balloon in the top left corner, and the reproduction has something that looks like a red balloon in the top left corner then I will have achieved my goal, even if the balloon in the reproduction is not quite in the same position and not quite the same size or colour.
When I say "as perceived by a human", I mean this in a very limited sense. i am not attempting to analyse the meaning of an image, I don't need to know what an image is of, i am only interested in the key visual features a human eye would notice, to the extent that this can be automated by an algorithm which has no capacity to conceptualise what it is actually observing.
Why this unusual criteria of human perception over photographic accuracy?
This software would be used to drive a drawing and painting robot, which will be collaborating with a human artist (see: video.google.com/videosearch?q=mr%20squiggle).
Rather than treating marks made by the human which are not photographically perfect as necessarily being mistakes, The algorithm should seek to incorporate what is already on the canvas into the final image.
So relative brightness, hue, saturation, size and position are much more important than being photographically identical to the original. The maintaining the topology of the features, block of colour, gradients, convex and concave curve will be more important the exact size shape and colour of those features
Still with me?
My problem is that I suffering a little from the "when you have a hammer everything looks like a nail" syndrome. To me it seems the way to do this is using a genetic algorithm with something like the comparison of wavelet transforms (see: grail.cs.washington.edu/projects/query/) used by retrievr (see: labs.systemone.at/retrievr/) to select fit solutions.
But the main reason I see this as the answer, is that these are these are the techniques I know, there are probably much more elegant solutions using techniques I don't now anything about.
It would be especially interesting to take into account the ways the human vision system analyses an image, so perhaps special attention needs to be paid to straight lines, and angles, high contrast borders and large blocks of similar colours.
Do you have any suggestions for things I should read on vision, image algorithms, genetic algorithms or similar projects?
Thank you
Mat
PS. Some of the spelling above may appear wrong to you and your spellcheck. It's just international spelling variations which may differ from the standard in your country: e.g. Australian standard: colour vs American standard: color
There is an model that can implemented as an algorithm to calculate a saliency map for an image, determining which parts of the image would get the most attention from a human.
The model is called itti koch model
You can find a startin paper here
And more resources and c++ sourcecode here
I cannot answer your question directly, but you should really take a look at artist/programmer (Lisp) Harold Cohen's painting machine Aaron.
That's quite a big task. You might be interested in image vectorizing (don't know what it's called officially), which is used to take in rasterized images (such as pictures you take with a camera) and outputs a set of bezier lines (i think) that approximate the image you put in. Since good algorithms often output very high quality (read: complex) line sets you'd also be interested in simplification algorithms which can help enormously.
Unfortunately I am not next to my library, or I could reccomend a number of books on perceptual psychology.
The first thing you must consider is the physiology of the human eye is such that when we examine an image or scene, we are only capturing very small bits at a time, as our eyes dart around rapidly. Our mind peices the different parts together to try and form a whole.
You might start by finding an algorithm for the path of an eyeball as it darts around. Perhaps it is attracted to contrast?
Next is that our eyes adjust the "exposure" depending on the context. It's like those high dynamic range images, if they were peiced together not by multiple exposures of a whole scene, but by many small images, each balanced on its own, but blended into its surroundings to form a high dynamic range.
Now there was a finding in a monkey brain that there is a single neuron that lights up if there's a diagonal line in the upper left of its field of vision. Similar neurons can be found for vertical lines, and horizontal lines in various areas of that monkey's field of vision. The "diagonalness" determines the frequency with which that neuron fires.
one might speculated that other neurons might be found and mapped to other qualities such as redness, or texturedness, and other things.
There's something humans can do that I've not seen a computer program ever able to do. it's something called "closure", where a human is able to fill in information about something that they are seeing, that doesn't actually exist in the image. an example:
*
* *
is that a triangle? If you knew that it was in advance, then you could probably make a program to connect the dots. But what if it's just dots? How can you know? I wouldn't attempt this one unless I had some really clever way of dealing with that one.
There are many other facts about human perception you might be able to use. Good luck, you've not picked a straightforward task.
i think a thing that could help you in this enormous task is human involvement. i mean data. like you could have many people sitting staring at random dots (like from the previous post) and connect them as they see right. you could harness that data.

Resources