Is it possible to create an unbound variable in Erlang? - erlang

I'm a completely new to erlang. As an exercise to learn the language, I'm trying to implement the function sublist using tail recursion and without using reverse. Here's the function that I took from this site http://learnyousomeerlang.com/recursion:
tail_sublist(L, N) -> reverse(tail_sublist(L, N, [])).
tail_sublist(_, 0, SubList) -> SubList;
tail_sublist([], _, SubList) -> SubList;
tail_sublist([H|T], N, SubList) when N > 0 ->
tail_sublist(T, N-1, [H|SubList]).
It seems the use of reverse in erlang is very frequent.
In Mozart/Oz, it's very easy to create such the function using unbound variables:
proc {Sublist Xs N R}
if N>0 then
case Xs
of nil then
R = nil
[] X|Xr then
Unbound
in
R = X|Unbound
{Sublist Xr N-1 Unbound}
end
else
R=nil
end
end
Is it possible to create a similar code in erlang? If not, why?
Edit:
I want to clarify something about the question. The function in Oz doesn't use any auxiliary function (no append, no reverse, no anything external or BIF). It's also built using tail recursion.
When I ask if it's possible to create something similar in erlang, I'm asking if it's possible to implement a function or set of functions in erlang using tail recursion, and iterating over the initial list only once.
At this point, after reading your comments and answers, I'm doubtful that it can be done, because erlang doesn't seem to support unbound variables. It seems that all variables need to be assigned to value.

Short Version
No, you can't have a similar code in Erlang. The reason is because in Erlang variables are Single assignment variables.
Unbound Variables are simply not allowed in Erlang.
Long Version
I can't imagine a tail recursive function similar to the one you presenting above due to differences at paradigm level of the two languages you are trying to compare.
But nevertheless it also depends of what you mean by similar code.
So, correct me if I am wrong, the following
R = X|Unbound
{Sublist Xr N-1 Unbound}
Means that the attribution (R=X|Unbound) will not be executed until the recursive call returns the value of Unbound.
This to me looks a lot like the following:
sublist(_,0) -> [];
sublist([],_) -> [];
sublist([H|T],N)
when is_integer(N) ->
NewTail = sublist(T,N-1),
[H|NewTail].
%% or
%%sublist([H|T],N)
%% when is_integer(N) -> [H|sublist(T,N-1)].
But this code isn't tail recursive.

Here's a version that uses appends along the way instead of a reverse at the end.
subl(L, N) -> subl(L, N, []).
subl(_, 0, Accumulator) ->
Accumulator;
subl([], _, Accumulator) ->
Accumulator;
subl([H|T], N, Accumulator) ->
subl(T, N-1, Accumulator ++ [H]).
I would not say that "the use of reverse in Erlang is very frequent". I would say that the use of reverse is very common in toy problems in functional languages where lists are a significant data type.
I'm not sure how close to your Oz code you're trying to get with your "is it possible to create a similar code in Erlang? If not, why?" They are two different languages and have made many different syntax choices.

Related

Case to check when list is empty rather then recursion?

Im trying to check with a case if a list is empty rather then recursivly catching the pattern when it is, is this the right way to go in Erlang or am i just walking down the wrong path and pattern matching is the best way to catch if a list has been emptied or not?
calculate([Head|Tail], pi, x, y) ->
...calculations of Head being sent to a list...
case Tail == [] of
false ->
calculate(Tail, pi, x, y)
end.
or should i just pattern match on calculate if the list is empty?
Error in your code
General practice is to use function clause with pattern match. It works just as case, and it is considered to much more readable. And it fixes one error you have in your implementation:
First of all your code could be rewritten in this manner.
calculate([Head|Tail], pi, x, y) ->
%% ... actual calculations ...
calculate( Tail, pi, x, y);
calculate([], pi, x, y) ->
%% you need to return something here, but you don't
As you can see, one of clauses do not return anything, which is not allowed in Erlang (fail during compilation). Your implementation does exactly same thing. case just like anything in Erlang must return some value (and since it is lase statement in your function this value will be returned from function). And since case needs to return something, it needs to match on one of it's clauses. It most cases, since Tail == [] will return false it will not be a problem. But at last recursive call, when Tail is empty list, Tail == [] will return true and case will not match to anything. And in Erlang this will cause (throw, or exit to be exact) case_clause error. So your implementation will always fail.
To fix it you need to make sure you always have something matching in you case, like this
case Tail == [] of
false ->
calculate(Tail, pi, x, y)
true ->
%% return something
end.
Or it could be written like this
case Tail of
[] ->
%% return something sane
_ ->
calculate(Tail, pi, x, y)
end.
where _ will match to anything, and will work somewhat like else is some other languages. And finally it could be written with function clauses, just like I showed before, but with this sane value returned.
EDIT
returning a value
If you look closer at our code wright now we are returning only one value; the one from last recursive call (the one I called "sane"). If you would like to take under account all calculations from all recursive calls you need to accumulate them somehow. And to do this we will use Acc variable
calculate([Head|Tail], pi, x, y, Acc) ->
%% ... actual calculations with result assigned to Res variable ...
NewAcc = [Res | Acc]
calculate(Tail, pi, x, y, NewAcc);
calculate([], pi, x, y, Acc) ->
Acc.
In each recursive call we add our calculations Res to accumulator Acc, and send this updated list to next level of recursion. And finally, when our input list is empty (we processed all data) we just return whole accumulator. All we need to do, is make sure, that when calculate is being first called, it is called with empty list as Acc. This could be done by new (somewhat old) function
calculate(List, pi, x, y) ->
calculate(List, pi, x, y, _Acc = []).
Now we can export calculate/4 and keep calculate/5 private.
Pattern match. Its the Right Thing.
It is also more efficient. It also prevents you from developing a habit of just accepting any sort of variables up front, going partway through your function and discovering that what you've received isn't even a list (oops!). Pattern matching (and using certain types of guards) are also central to the way Dialyzer checks success typings -- which may or not matter to you right now, but certainly will once you start working on the sort of software that has customers.
Most importantly, though, learning to take advantage of pattern matching teaches you to write smaller functions. Writing a huge function with a bajillion parameters that can do everything is certainly possible, and even common in many other languages, but pattern matching will illustrate to you why this is a bad idea as soon as you start writing your match cases. That will help you in ways I can't even begin to describe; it will seep into how you think about programs without you appreciating it at first; it will cut the clutter out of your nested conditions (because they won't exist); it will teach you to stop writing argument error checking code everywhere.
add a clause with empty list, and if not possible, one with a single element list:
func([H],P,X,Y) ->
do_something(H,P,X,Y);
func([H|T],P,X,Y) ->
do_something(H,P,X,Y),
func(T,P,X,Y).
Note that this will fail with an empty input list.
Look also if you can use one of the functions lists:map/2 or lists:foldl/3 or list comprehension...

Basic Erlang - Alternatives to function calls in guards etc

I'm trying to learn Erlang, coming from a C++/Java background. This forces me to re-think all my methods.
Right now I'm trying to write something that returns the N first elements of a list. Right now it looks like this, although I can't call functions in guards or if expressions. What is the Erlang way of doing this?
take([Xh|Xr],N,Xn) ->
if
len(Xn) /= N -> take(Xr,N,app(Xh, Xn));
len(Xn) == N -> Xn
end.
I also tried calling the function before, but that didn't work either:
take([Xh|Xr],N,Xn) ->
G = len(Xn);
if
G /= N -> take(Xr,N,app(Xh, Xn));
G == N -> Xn
end.
Generally with this kind of problems, you need to switch to a recursive way of thinking instead of the iterative approach you're using. Here's what I would do:
take(List, N) ->
take(List, N, []).
take(_List, 0, Acc) ->
lists:reverse(Acc);
take([H|T], N, Acc) ->
take(T, N - 1, [H|Acc]).
It's really common for people coming from languages that promote the iterative approach to try and shoehorn that approach into Erlang. The problem is that Erlang doesn't have the primitives for doing it that way since it's a functional language. So you're forced to do it the functional way, and in the end it's often the more elegant approach.
In addition to Fylke's solution, there is also something to be said for a body recursive approach:
take(_List,0) ->
[];
take([H|T],N) ->
[H|take(T,N-1)].
Your approach isn't wrong per se, it just needs a bit of help:
-module(foo).
-compile(export_all).
take([Xh|Xr],N,Xn) ->
G = length(Xn), %% This line had trouble. Use length/1 and end with , not ;
if
G /= N ->
take(Xr,N,app(Xh, Xn));
G == N ->
Xn
end.
app(X, L) ->
L ++ [X].
As other people hints, your approach is not very Erlang idiomatic, and the other solutions are far better. Also, look up the source code for lists:split/2
https://github.com/erlang/otp/blob/master/lib/stdlib/src/lists.erl#L1351

Dynamic pattern matching

How can I do dynamic pattern matching in Erlang?
Supose I have the function filter/2 :
filter(Pattern, Array)
where Pattern is a string with the pattern I want to match (e.g "{book, _ }" or "{ebook, _ }") typed by an user and Array is an array of heterogenous elements (e.g {dvd, "The Godfather" } , {book, "The Hitchhiker's Guide to the Galaxy" }, {dvd, "The Lord of Rings"}, etc) Then I would like filter/2 above to return the array of elements in Array that match Pattern.
I've tried some ideas with erl_eval without any sucess...
tks in advance.
With little bit documentation study:
Eval = fun(S) -> {ok, T, _} = erl_scan:string(S), {ok,[A]} = erl_parse:parse_exprs(T), {value, V, _} = erl_eval:expr(A,[]), V end,
FilterGen = fun(X) -> Eval(lists:flatten(["fun(",X,")->true;(_)->false end."])) end,
filter(FilterGen("{book, _}"), [{dvd, "The Godfather" } , {book, "The Hitchhiker's Guide to the Galaxy" }, {dvd, "The Lord of Rings"}]).
[{book,"The Hitchhiker's Guide to the Galaxy"}]
Is there any special reason why you want the pattern in a string?
Patterns as such don't exist in Erlang, they can really only occur in code. An alternative is to use the same conventions as with ETS match and select and write your own match function. It is really quite simple. The ETS convention uses a term to represent a pattern where the atoms '$1', '$2', etc are used as variables which can be bound and tested, and '_' is the don't care variable. So your example patterns would become:
{book,'_'}
{ebook,'_'}
{dvd,"The Godfather"}
This is probably the most efficient way of doing it. There is the possibility of using match specifications here but it would complicate the code. It depends on how complicated matching you need.
EDIT:
I add without comment code for part of the matcher:
%% match(Pattern, Value) -> {yes,Bindings} | no.
match(Pat, Val) ->
match(Pat, Val, orddict:new()).
match([H|T], [V|Vs], Bs0) ->
case match(H, V, Bs0) of
{yes,Bs1} -> match(T, Vs, Bs1);
no -> no
end;
match('_', _, Bs) -> {yes,Bs}; %Don't care variable
match(P, V, Bs) when is_atom(P) ->
case is_variable(P) of
true -> match_var(P, V, Bs); %Variable atom like '$1'
false ->
%% P just an atom.
if P =:= V -> {yes,Bs};
true -> no
end
end.
match_var(P, V, Bs) ->
case orddict:find(P, Bs) of
{ok,B} when B =:= V -> {yes,Bs};
{ok,_} -> no;
error -> {yes,orddict:store(P, V, Bs)}
end.
You can use lists:filter/2 to do the filtering part. Converting the string to code is a different matter. Are all the patterns in the form of {atom, _}? If so, you might be able to store the atom and pass that into the closure argument of lists:filter.
Several possibilities come to the mind, depending on how dynamic the patterns are and what features you need in your patterns:
If you need exactly the syntax of erlang patterns and the pattern doesnt't change very often. You could create the matching source code and write it to a file. Use compile:file to create a binary and load this with code:load_binary.
Advantage: Very fast matching
Disadvantage: overhead when pattern changes
Stuff the data from Array into ETS and use match specifications to get out the data
You might use fun2ms to help create the match specification. But fun2ms normally is used as a parse transfor during compile time. There is also a mode used by the shell that can be made to work from strings with the help of the parser probably. For details see ms_transform
There might also be some way to use qlc but I didn't look into this in detail.
In any case be careful to sanitize your matching data if it comes from untrusted sources!

right rotate a List in Erlang

I am getting myself familiar to Sequential Erlang (and the functional programming thinking) now. So I want to implement the following two functionality without the help of BIF. One is left_rotate (which I have come up with the solution) and the other is right_rotate (which I am asking here)
-export(leftrotate/1, rightrotate/1).
%%(1) left rotate a lits
leftrotate(List, 0) ->
List;
leftrotate([Head | Tail], Times) ->
List = append(Tail, Head),
leftrotate(List, Times -1).
append([], Elem)->
[Elem];
append([H|T], Elem) ->
[H | append(T, Elem)].
%%right rotate a list, how?
%%
I don't want to use BIF in this exercise. How can I achieve the right rotation?
A related question and slightly more important question. How can I know one of my implementation is efficient or not (i.e., avoid unnecessary recursion if I implement the same thing with the help of a BIF, and etc.)
I think BIF is built to provide some functions to improve efficiency that functional programming is not good at (or if we do them in a 'functional way', the performance is not optimal).
The efficiency problem you mention has nothing to do with excessive recursion (function calls are cheap), and everything to do with walking and rebuilding the list. Every time you add something to the end of a list you have to walk and copy the entire list, as is obvious from your implementation of append. So, to rotate a list N steps requires us to copy the entire list out N times. We can use lists:split (as seen in one of the other answers) to do the entire rotate in one step, but what if we don't know in advance how many steps we need to rotate?
A list really isn't the ideal data structure for this task. Lets say that instead we use a pair of lists, one for the head and one for the tail, then we can rotate easily by moving elements from one list to the other.
So, carefully avoiding calling anything from the standard library, we have:
rotate_right(List, N) ->
to_list(n_times(N, fun rotate_right/1, from_list(List))).
rotate_left(List, N) ->
to_list(n_times(N, fun rotate_left/1, from_list(List))).
from_list(Lst) ->
{Lst, []}.
to_list({Left, Right}) ->
Left ++ reverse(Right).
n_times(0, _, X) -> X;
n_times(N, F, X) -> n_times(N - 1, F, F(X)).
rotate_right({[], []}) ->
{[], []};
rotate_right({[H|T], Right}) ->
{T, [H|Right]};
rotate_right({[], Right}) ->
rotate_right({reverse(Right), []}).
rotate_left({[], []}) ->
{[], []};
rotate_left({Left, [H|T]}) ->
{[H|Left], T};
rotate_left({Left, []}) ->
rotate_left({[], reverse(Left)}).
reverse(Lst) ->
reverse(Lst, []).
reverse([], Acc) ->
Acc;
reverse([H|T], Acc) ->
reverse(T, [H|Acc]).
The module queue provides a data structure something like this. I've written this without reference to that though, so theirs is probably more clever.
First, your implementation is a bit buggy (try it with the empty list...)
Second, I would suggest you something like:
-module(foo).
-export([left/2, right/2]).
left(List, Times) ->
left(List, Times, []).
left([], Times, Acc) when Times > 0 ->
left(reverse(Acc), Times, []);
left(List, 0, Acc) ->
List ++ reverse(Acc);
left([H|T], Times, Acc) ->
left(T, Times-1, [H|Acc]).
right(List, Times) ->
reverse(foo:left(reverse(List), Times)).
reverse(List) ->
reverse(List, []).
reverse([], Acc) ->
Acc;
reverse([H|T], Acc) ->
reverse(T, [H|Acc]).
Third, for benchmarking your functions, you can do something like:
test(Params) ->
{Time1, _} = timer:tc(?MODULE, function1, Params),
{Time2, _} = timer:tc(?MODULE, function2, Params),
{{solution1, Time1}, {solution2, Time2}}.
I didn't test the code, so look at it critically, just get the idea.
Moreover, you might want to implement your own "reverse" function. It will be trivial by using tail recursion. Why not to try?
If you're trying to think in functional terms then perhaps consider implementing right rotate in terms of your left rotate:
rightrotate( List, 0 ) ->
List;
rightrotate( List, Times ) ->
lists:reverse( leftrotate( lists:reverse( List ), Times ) ).
Not saying this is the best idea or anything :)
Your implementation will not be efficient since the list is not the correct representation to use if you need to change item order, as in a rotation. (Imagine a round-robin scheduler with many thousands of jobs, taking the front job and placing it at the end when done.)
So we're actually just asking ourself what would be the way with least overhead to do this on lists anyway. But then what qualifies as overhead that we want to get rid of? One can often save a bit of computation by consing (allocating) more objects, or the other way around. One can also often have a larger than needed live-set during the computation and save allocation that way.
first_last([First|Tail]) ->
put_last(First, Tail).
put_last(Item, []) ->
[Item];
put_last(Item, [H|Tl]) ->
[H|put_last(Item,Tl)].
Ignoring corner cases with empty lists and such; The above code would cons the final resulting list directly. Very little garbage allocated. The final list is built as the stack unwinds. The cost is that we need more memory for the entire input list and the list in construction during this operation, but it is a short transient thing. My damage from Java and Lisp makes me reach for optimizing down excess consing, but in Erlang you dont risk that global full GC that kills every dream of real time properties. Anyway, I like the above approach generally.
last_first(List) ->
last_first(List, []).
last_first([Last], Rev) ->
[Last|lists:reverse(Rev)];
last_first([H|Tl], Rev) ->
last_first(Tl, [H|Rev]).
This approach uses a temporary list called Rev that is disposed of after we have passed it to lists:reverse/1 (it calls the BIF lists:reverse/2, but it is not doing anything interesting). By creating this temporary reversed list, we avoid having to traverse the list two times. Once for building a list containing everything but the last item, and one more time to get the last item.
One quick comment to your code. I would change the name of the function you call append. In a functional context append usually means adding a new list to the end of a list, not just one element. No sense in adding confusion.
As mentioned lists:split is not a BIF, it is a library function written in erlang. What a BIF really is is not properly defined.
The split or split like solutions look quite nice. As someone has already pointed out a list is not really the best data structure for this type of operation. Depends of course on what you are using it for.
Left:
lrl([], _N) ->
[];
lrl(List, N) ->
lrl2(List, List, [], 0, N).
% no more rotation needed, return head + rotated list reversed
lrl2(_List, Head, Tail, _Len, 0) ->
Head ++ lists:reverse(Tail);
% list is apparenly shorter than N, start again with N rem Len
lrl2(List, [], _Tail, Len, N) ->
lrl2(List, List, [], 0, N rem Len);
% rotate one
lrl2(List, [H|Head], Tail, Len, N) ->
lrl2(List, Head, [H|Tail], Len+1, N-1).
Right:
lrr([], _N) ->
[];
lrr(List, N) ->
L = erlang:length(List),
R = N rem L, % check if rotation is more than length
{H, T} = lists:split(L - R, List), % cut off the tail of the list
T ++ H. % swap tail and head

How do I know if a function is tail recursive in F#

I wrote the follwing function:
let str2lst str =
let rec f s acc =
match s with
| "" -> acc
| _ -> f (s.Substring 1) (s.[0]::acc)
f str []
How can I know if the F# compiler turned it into a loop? Is there a way to find out without using Reflector (I have no experience with Reflector and I Don't know C#)?
Edit: Also, is it possible to write a tail recursive function without using an inner function, or is it necessary for the loop to reside in?
Also, Is there a function in F# std lib to run a given function a number of times, each time giving it the last output as input? Lets say I have a string, I want to run a function over the string then run it again over the resultant string and so on...
Unfortunately there is no trivial way.
It is not too hard to read the source code and use the types and determine whether something is a tail call by inspection (is it 'the last thing', and not in a 'try' block), but people second-guess themselves and make mistakes. There's no simple automated way (other than e.g. inspecting the generated code).
Of course, you can just try your function on a large piece of test data and see if it blows up or not.
The F# compiler will generate .tail IL instructions for all tail calls (unless the compiler flags to turn them off is used - used for when you want to keep stack frames for debugging), with the exception that directly tail-recursive functions will be optimized into loops. (EDIT: I think nowadays the F# compiler also fails to emit .tail in cases where it can prove there are no recursive loops through this call site; this is an optimization given that the .tail opcode is a little slower on many platforms.)
'tailcall' is a reserved keyword, with the idea that a future version of F# may allow you to write e.g.
tailcall func args
and then get a warning/error if it's not a tail call.
Only functions that are not naturally tail-recursive (and thus need an extra accumulator parameter) will 'force' you into the 'inner function' idiom.
Here's a code sample of what you asked:
let rec nTimes n f x =
if n = 0 then
x
else
nTimes (n-1) f (f x)
let r = nTimes 3 (fun s -> s ^ " is a rose") "A rose"
printfn "%s" r
I like the rule of thumb Paul Graham formulates in On Lisp: if there is work left to do, e.g. manipulating the recursive call output, then the call is not tail recursive.

Resources