Set a timeout for a slow network connection in iOS? - ios

I have a JSON database connection for my app, and it is set to load (refresh) on the app's initial launch. The JSON data is stored on the phone, and retrievable if no internet connection is discovered on relaunching the app--so there's always data in there.
If the user has a slow connection to the internet--as in patchy <3G--the app will hang. I would like to set a timeout that reverts the database to the saved information (as it would if there were no connection at all). Unfortunately, I think that setting the timeout in the wrong function could make the app crash.
I've read there's no publicly available class to determine a connection speed, but can anyone suggest alternatives?

You could set a timeout for the NSURLRequest, if thats what you're using. In the callback that handles the timeout you could fall back to your local copy of the data. Check the following answer provided by another user.
NSURLConnection timeout?
If you wanted to determine the actual connection speed, you could have your app download a piece of arbitrary data of fixed length, and record the time it takes to complete. This has its own flaws though. You would have to decide when to do this, and how frequently. It may also suffer from the problem that you are trying to solve. And, for example, if the user was on a train, their connection may be great one moment, and poor the next. I think that the timeout solution would work ok, it just means that the user has to wait a period of time before the app falls back to the local copy of the data.

Related

iOS NSURLSession waits for timeout if server doesn't exist

We use an NSURLSession to download data in the background, and have timeoutIntervalForResource defined so it will timeout if it takes too long, but if, for whatever reason, the source server doesn't exist then it still sits and waits. Is there any way to get it to abort immediately, or 'ask' the NSURLSessionDownloadTask if anything has been downloaded yet?
Failing that, what would be the best way of performing a pre-check to ensure a server exists before trying to download data from it?
These servers may be out of our control so we can't place a small file to download to check availability. The only file we may not about could be a sizeable video, for example.
You can indeed ask the task about its status. First, check the response property. If that is nil, then you haven't gotten the first packet from the server. If that is non-nil, use countOfBytesExpectedToReceive and countOfBytesReceived as needed to determine progress.
I should also note that these properties all support KVO, AFAIK.
You could also perform an explicit DNS lookup prior to scheduling the background request if you'd prefer, with the caveat that doing so would prevent you from scheduling something that might actually work if the user's Internet connection comes back online in the meantime. :-)

Can I prevent an iOS user from changing the date and time?

I want to deploy managed iOS devices to employees of the company, and the app they will use will timestamp data that will be recorded locally, then forwarded. I need those timestamps to be correct, so I must prevent the user from adjusting the time on the device, recording a value, then resetting the date and time. Date and time will be configured to come from the network automatically, but the device may not have network connectivity at all times (otherwise I would just read network time every time a data value is recorded). I haven't seen an option in Apple Configurator to prevent changing the date and time, so is there some other way to do this?
You won't be able to prevent a user either changing their clock or just hitting your API directly as other commentators have posted. These are two separate issues and can be solved by having a local time that you control on the device and by generating a hashed key of what you send to the server.
Local Time on Device:
To start, make an API call when you start the app which sends back a timestamp from the server; this is your 'actual time'. Now store this on the device and run a timer which uses a phone uptime function (not mach_absolute_time() or CACurrentMediaTime() - these get weird when your phone is in standby mode) and a bit of math to increase that actual time every second. I've written an article on how I did this for one of my apps at (be sure to read the follow up as the original article used CACurrentMediaTime() but that has some bugs). You can periodically make that initial API call (i.e. if the phone goes into the background and comes back again) to make sure that everything is staying accurate but the time should always be correct so long as you don't restart the phone (which should prompt an API call when you next open the app to update the time).
Securing the API:
You now have a guaranteed* accurate time on your device but you still have an issue in that somebody could send the wrong time to your API directly (i.e. not from your device). To counteract this, I would use some form of salt/hash with the data you are sending similar to OAuth. For example, take all of the parameters you are sending, join them together and hash them with a salt only you know and send that generated key as an extra parameter. On your server, you know the hash you are using and the salt so you can rebuild that key and check it with the one that was sent; if they don't match, somebody is trying to play with your timestamp.
*Caveat: A skilled attacked could hi-jack the connection so that any calls to example.com/api/timestamp come from a different machine they have set up which returns the time they want so that the phone is given the wrong time as the starting base. There are ways to prevent this (obfuscation, pairing it with other data, encryption) but that becomes a very open-ended question very quickly so best asked elsewhere. A combination of the above plus a monitor to notice weird times might be the best thing.
There doesn't appear to be any way to accomplish what you're asking for. There doesn't seem to be a way to stop the user from being able to change the time. But beyond that, even if you could prevent them from changing the time, they could let their device battery die, then plug it in and turn it on where they don't have a net connection, and their clock will be wrong until it has a chance to set itself over a network. So even preventing them from changing the time won't guarantee accuracy.
What you could do is require a network connection to record values, so that you can verify the time on a server. If you must allow it to work without a net connection, you could at least always log the current time when the app is brought up and note if the time ever seems to go backwards. You'll know something is up if the timestamp suddenly is earlier than the previous timestamp. You could also do this check perhaps only when they try to record a value. If they record a value that has a timestamp earlier than any previous recorded value, you could reject it, or log the event so that the person can be questioned about it at a later time.
This is also one of those cases where maybe you just have to trust the user not to do this, because there doesn't seem to be a perfect solution to this.
The first thing to note is that the user will always be able to forge messages to your server in order to create incorrect records.
But there are some useful things you can use to at least notice problems. Most of the time the best way to secure this kind of system is to focus on detection, and then publicly discipline anyone who has gone out of their way to circumvent policy. Strong locks are meaningless unless there's a cop who's eventually going to show up and stop you.
Of course you should first assume that any time mistakes are accidental. But just publicly "noticing" that someone's device seems to be "misbehaving" is often enough to make bad behaviors go away.
So what can you do? The first thing is to note the timestamps of things when they show up at the server. Timestamps should always move forward in time. So if you've already seen records from a device for Monday, you should not later receive records for the previous Sunday. The same should be true for your app. You can keep track of when you are terminated in NSUserDefaults (as well as posting this information to the server). You should not generally wake up in the past. If you do, complain to your server.
Watch for UIApplicationSignificantTimeChangeNotification. I believe you'll receive it if the time is manually changed (you'll receive it in several other cases as well, most of them benign). Watch for time moving significantly backwards. Complain to your server.
Pay attention to mach_absolute_time(). This is the time since the device was booted and is not otherwise modifiable by the user without jailbreaking. It's useful for distinguishing between reboots and other events. It's in a weird time unit, but it can be converted to human time as described in QA1398. If the mach time difference is more than an hour greater than the wall clock time, something is weird (DST changes can cause 1 hour). Complain to your sever.
All of these things could be benign. A human will need to investigate and make a decision.
None of these things will ensure that your records are correct if there is a dedicated and skilled attacker involved. As I said, a dedicated and skilled attacker could just send you fake messages. But these things, coupled with monitoring and disciplinary action, make it dangerous for insiders to even experiment with how to beat the system.
You cannot prevent the user from changing time.
Even the time of an Location is adjusted by Apple, and not a real GPS time.
You could look at mach kernel time, which is a relative time.
Compare that to the time when having last network connection.
But this all sounds not reliable.

NSURLConnection (iOS, Objective-C) seems to be throttling after repeated sequential use

This is an issue that's making me question my own sanity, but I'm posting the question in case it's something real rather than a problem of my own making.
I have an iOS app that is making use of the NSURLConnection class to send a request to a webserver. The object is instantiated and instructed to call back the delegate, which receives the corresponding notifications didReceiveResponse / didReceiveData / didFinishLoading / didFailWithError. Effectively the same code that is posted on Apple's dev page for using the class. The requests are all short POST transmissions with JSON data; the responses are also JSON-formatted, and come back from an Apache Tomcat Java Servlet.
For the most part it all works as advertised. The app sends a series of requests to the server in order to start a job and poll for partial results. Most of the exhanges are short, but sometimes the results can be up to about 100-200Kb maximum when there are partial results available.
The individual pieces of data get handed back by the operating system in chunks of about 10Kb each time, give or take. The transport is essentially instantaneous, as it is talking to a test server on the LAN.
However: after a few dozen polling operations, the rate of transport grinds to a near standstill. The sequence of response/data.../finished works normally: the webserver has delivered its payload, but the iOS app is receiving exactly 2896 bytes, with a periodicity of 20-30 seconds in between chunks. It is the correct data, and waiting about 5 minutes for 130Kb of data does confirm that it's operating correctly.
Nothing I do seems to conveniently work around it. I tried switching to the "async" invocation method with a response block; same result. Talking to a remote website rather than my LAN test deployment gets the same result. Running in simulator or iPhone gets the same result. The server returns content-length and doesn't try to do anything weird like keeping the connection alive.
Changing the frequency of the polling achieves little, unless I crank up the delay in between polling to 50 seconds, then everything works fine, presumably because it only ends up polling once or twice.
A hypothesis that fits this observation is that the NSURLConnection object hangs around long after it has been released, and chews up resources. Once a certain limit is hit, the progress rate grinds to a near halt. If the slowed down connection actually completes, subsequent connections work normally again, presumably because they've been cleaned up.
So does this sound familiar to anyone?

How to check lock status and unlock if necessary for Database on Blackberry?

Since I've started developing my Blackberry app, the biggest problems I've encountered all had to do with SQLite Databases.
Right now I'm putting my app through a stress test, and when problems pop up I address them by printing out statuses to the console and taking care of things line by line. Right now (after mashing buttons on my app) I received a "Database is locked" error and I'm not sure what to do.
It seems that once the database is locked it's locked for good until it is unlocked........ my question is how can I unlock it?? First of all, how can I check to see if it's locked??
I'm sure our users won't be mashing buttons like I did, but you never know. I want to account for every possible scenario.
Thanks
EDIT: This is what happens in my application..... When I launch it starts a thread, this thread performs a cleanup on one of my tables based on how old certain pieces of data are (uses DELETE). The thread then continues to get a USER object from my DB (read only), it then uses this USER object as a parameter to call a web service. The data retrieved from the web service is INSERTED into my database. (It's a little more complex than that as a few read/write operations are performed at this time. After that, the thread fires a callback method to update my UI.
This all works fine. I can exit the app WHILE the thread is running and relaunch and a flag will prevent it from starting a new instance of the same thread (unless the other one is done of course).
Now my problem: My app's home screen is a list of buttons, when the user clicks one of these buttons another, more detailed list is loaded (this requires a READ ONLY call to the database). When I launch the app (firing the web service calling thread) and then click a button on the main screen right away, the table gets locked. (Not always, sometimes it takes 4 or 5 tries, sometimes more, sometimes less). But if I keep doing this it WILL eventually lock making it impossible to make any calls to my DB, hence no more UI (which depends on the DB).
The DB call that populates the UI on the second screen is READ ONLY, can't I have as many of these as I need?? What causes the DB to lock?? What's the difference between a DB lock and File System error (12)??
I seemed to have fixed the problem. I was under the impression that if a read/write connection was open then a read-only connection could be created safely.
This doesn't seem to be the case. If I have a read/write connection open then no other connections can open until that one is finished.
I basically created one read/write connection, set a flag to identify it as open, and during my read connection use the same Database object if the flag is open, or create a read only if it's closed.
So far so good.
Sqlite does not support concurrent modification. In practice on BlackBerry, this means you can only open the database from one part of the code at a time. To maintain this one-at-a-time access, you need to close the database when you are done with it, as #AnkitRox points out.
However you also need to guard against concurrent access. Even if your code properly closes the database, it is possible for two different threads to access the database. In that case, you will need one to wait. In Java-ME this is typically accomplished through the 'synchronized' keyword, and using the same lock object for all database access.
Check properly that, you are opening and closing database before and after execution of query respectively.
Because if Database is going to open without closing it properly, then it gives errors.

withContentsofURL possible to declare a timeout limit?

I have an app with dynamic data and the update method uses arrayWithContentsofURL and dictionaryWithContentsofURL to get the plists from a server in order to update my database.
My problem:
When there is no or not correctly working internet connection on the device this request simply tries to get the data for about a minute before it stops trying and continues execution.
Is there a way to maybe set a timeout for this function?
PS: I know this is probably the worst way to do this and I would be happy if someone could point me in the right direction :) I'm quite new to iOS programming so please be patient.
In my opinion it's best to use an NSMutableURLRequest with it.
Which has a - (void)setTimeoutInterval method. From the documentation:
The timeout interval, in seconds. If during a connection attempt the
request remains idle for longer than the timeout interval, the request
is considered to have timed out. The default timeout interval is 60
seconds.
Suggest you use an NSURLRequest to send the Request object. Its delegate functions will return you the plist.
You could take this example, about half way on that page it downloads a json object very much the same way as you could fetch a plist.

Resources