pointers and linked list with shared memory - memory

I want to get 2 programs to communicate, one (server) would store datas, and the other (client) would just access it.
I'll have to use a linked list to store datas because it won't stop storing, and then I was wondering if I could access to the whole linked list if only the first node is shared in memory.
What I mean is… are we allowed to access from the client program to the memory pointed by a shared pointer?
Sorry it seems obvious that we can not, so should I store my linked list into the shared memory, or do you think that would be awkward?
Because if I do so, I'll have to declare a shared memory for every node right?
So, to add shared memory to both programs I need the same keys, but I don't know how many keys there will be, and I can't just store it for both programs, unless I would have had already a linked list…
so I used a very very VERY awkward method that I don't even know if it works right, but I wish you can tell, which is to use ftok that is supposed to take an (url,pid) and return a key. So I assumed it would send the exact same key if I used the same url and pid, using a fake pid starting from 0 that I would increment for every element I add to the linked list… what do you think about it? Any other way to do it which would seem less… crap?
typedef struct s_shared_elem
{
char c;
struct s_shared_elem* next;
struct s_shared_elem* previous;
}shared_elem;
typedef struct s_shared_list
{
s_shared_elem* first;
s_shared_elem* last;
}shared_list;
int forthekey = 0;
char* url="/home/toor/Projet_cgi/";
shared_elem* shared_malloc(int pid, const char* url)
{
shared_elem* shm;
int shmid;
int key=ftok(url,pid);
if((shmid=shmget(key,1,IPC_CREAT | 0666)) < 0)
{
perror("shmget");
exit(1);
}
if ((shm = shmat(shmid,NULL,0)) == (shared_elem*)-1)
{
perror("shmat");
exit(1);
}
return shm;
}
void Init_shared_list(shared_list* liste)
{
liste->first = NULL;
liste->last = NULL;
}
void Add_elem(shared_list* liste)
{
shared_elem* new = shared_malloc(pid,url);
new->next = NULL;
new->previous = liste->last;
if(liste->first == NULL)
{
liste->first = new;
liste->last = new;
}
else
{
liste->last->next = new;
liste->last = new;
}
forthekey++;
}
void shared_free(shared_elem* todelete,int pid, const char* url)
{
shared_elem* shm;
int shmid;
int key=ftok(url,pid);
if((shmid=shmget(key,1,IPC_CREAT | 0666)) < 0)
{
perror("shmget");
exit(1);
}
shmdt(todelete);
shmctl(shmid,IPC_RMID,NULL);
forthekey--;
}
void Delete_list(shared_list* liste)
{
while(liste->last != liste->first)
{
shared_elem* tmp=liste->last;
liste->last=liste->last->previous;
Shared_free(tmp,pid,url);
}
Shared_free(liste->first,pid,url);
}

In share memory you can insert a whole linked list. It is useful in many cases. You do not need to create a linked list of share memory (e.g. using previous key, next key ). All you need to copy each node of linked list to the shared memory.
for example .....
process2.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/shm.h>
int main(int argc, char *argv[])
{
int shmid,i;
node *data;
if ((shmid = shmget(10, SHM_SIZE, 0644 | IPC_CREAT)) == -1) {
perror("shmget");
exit(1);
}
data = (node *)shmat(shmid, (void *)0, 0); // node is linked list
for(i=0;i<2;i++)
printf("%d\n",(data++)->item_code);
if (shmdt(data) == -1) {
perror("shmdt");
exit(1);
}
return 0;
}
process1.c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/shm.h>
int main(int argc, char *argv[])
{
node *SELL=NULL; // node is linked list (structure) SELL is header
insert(&SELL,"Soap",1,12.5,10);
insert(&SELL,"Pen",2,20.75,8);
display(SELL);
int shmid,i;
node *data;
if ((shmid = shmget(10, 2*sizeof(node), 0644 | IPC_CREAT)) == -1) {
perror("shmget");
exit(1);
}
data = (node *) shmat(shmid, (void *)0, 0);
for(i=0;i<2;i++)
{
*(data++)=*SELL;
SELL=SELL->next;
}
getchar();
if (shmdt(data) == -1) {
perror("shmdt");
exit(1);
}
shmctl(shmid, IPC_RMID, NULL);
return 0;
}
Run process1.c 1st then run process2.c

Related

Pthreads based program crashing on MacOS doesn't crash on Linux

I have a pthreads based program with 3 threads that crashes on MacOS (Darwin Kernel Version 19.6.0) within a few seconds. I was expecting the same behavior on Linux. But the program doesn't crash on Linux. I am left speculating if Linux has a different thread scheduling policy or if it is something else. Any pointers appreciated.
This is the program. If I don't use pthread mutex lock in the printer thread, it is supposed to crash because the linked list is left in an inconsistent state.
#include<stdio.h>
#include<string.h>
#include<pthread.h>
#include<stdlib.h>
#include<unistd.h>
#include "list.h"
#define RANGE_MIN 1
#define RANGE_MAX 10
pthread_t tid[3];
list_t list;
pthread_mutex_t queue_lock;
/* Return a uniformly random number in the range [low,high]. */
int random_range (unsigned const low, unsigned const high)
{
unsigned const range = high - low + 1;
return low + (int) (((double) range) * rand() / (RAND_MAX + 1.0));
}
/*
* consumer thread function
*/
void* consumer(void *arg)
{
static int val = 0;
while (1) {
//sleep(1);
pthread_mutex_lock(&queue_lock);
while (list.total_elem > 0)
consume_and_delete(&list);
pthread_mutex_unlock(&queue_lock);
}
}
void *producer(void *arg)
{
while (1) {
//sleep(1);
pthread_mutex_lock(&queue_lock);
while (list.total_elem < 10)
add_to_list(&list, random_range(RANGE_MIN, RANGE_MAX));
pthread_mutex_unlock(&queue_lock);
}
}
/*
* printer thread function
*/
void* printer(void *arg)
{
while (1) {
//pthread_mutex_lock(&queue_lock); //lines deliberately commented out to show the crash
print_list(&list);
//pthread_mutex_unlock(&queue_lock);
}
}
int main(void)
{
int ret;
if (pthread_mutex_init(&queue_lock, NULL) != 0) {
printf("\n mutex init failed\n");
return 1;
}
ret = pthread_create(&(tid[1]), NULL, &consumer, NULL);
if (ret != 0) {
printf("\ncan't create thread :[%s]", strerror(ret));
}
ret = pthread_create(&(tid[0]), NULL, &producer, NULL);
if (ret != 0) {
printf("\ncan't create thread :[%s]", strerror(ret));
}
ret = pthread_create(&(tid[2]), NULL, &printer, NULL);
if (ret != 0) {
printf("\ncan't create thread :[%s]", strerror(ret));
}
pthread_join(tid[0], NULL);
pthread_join(tid[1], NULL);
pthread_join(tid[2], NULL);
pthread_mutex_destroy(&queue_lock);
return 0;
}
For the sake of completeness, here is the code for list.h and list.c
ifndef __LIST_H__
#define __LIST_H__
typedef struct node_ {
int num;
struct node_ *next;
} node_t;
typedef struct list_ {
int total_elem;
node_t *head;
} list_t;
#define TRUE 1
#define FALSE 0
void add_to_list(list_t *list, int num);
node_t *allocate_new(int num);
void consume_and_delete(list_t *list);
void print_list(list_t *list);
#endif
list.c:
#include <stdio.h>
#include <stdlib.h>
#include "list.h"
void add_to_list(list_t *list, int val)
{
node_t *tmp;
node_t *new;
new = allocate_new(val);
if (!new) {
printf("%s: allocation failure \n", __FUNCTION__);
}
printf("%s: Enqueueing %d\n", __FUNCTION__, new->num);
if (!list) {
return;
}
if (!list->head) {
list->total_elem++;
list->head = new;
return;
}
tmp = list->head;
while (tmp->next) {
tmp = tmp->next;
}
tmp->next = new;
list->total_elem++;
}
node_t *allocate_new(int num)
{
node_t *tmp;
tmp = malloc(sizeof(node_t));
if (!tmp) {
printf("%s: failed in malloc\n", __FUNCTION__);
return NULL;
}
tmp->num = num;
tmp->next = NULL;
return tmp;
}
/* reads from the front of the queue and deletes the element
*/
void consume_and_delete(list_t *list)
{
node_t *tmp, *next;
if (!list->head) {
return;
}
tmp = list->head;
next = tmp->next;
printf("%s: Dequeueing %d\n", __FUNCTION__,tmp->num);
list->head = next;
list->total_elem--;
free(tmp);
}
void print_list(list_t *list)
{
node_t *tmp;
if (!list->head) {
printf("%s: queue empty \n", __FUNCTION__);
}
tmp = list->head;
while (tmp) {
printf("%d ", tmp->num);
tmp = tmp->next;
}
printf("\n");
}
Makefile:
all: prodcon
prodcon: list.o prod_consume.o
gcc -g -o prodcon list.o prod_consume.o -lpthread
list.o: list.c list.h
gcc -g -c -o list.o list.c
prod_consume.o: prod_consume.c list.h
gcc -g -c -o prod_consume.o prod_consume.c
clean:
rm -f *.o ./prodcon
Note that if I un-comment pthread_mutex_lock and unlock calls in printer fn, the program runs without a crash on MacOS, as expected. But on Linux, even without un-commenting those lines in printer thread, it runs fine.
So my question. Is thread scheduling different in Linux. Or is is there some other reason?
Any reason the program runs fine on Linux, while it crahes on MacOS?
//lines deliberately commented out to show the crash
The print_list accesses the list without the lock; of course the code will intermittently crash, what did you expect?
on Linux, even without un-commenting those lines in printer thread, it runs fine.
It doesn't "run fine" -- it exercises undefined behavior, and will crash if you run enough times and the stars align to expose the data race.

CS50 pset5 Speller [2022] - " :( program is free of memory errors"

I get error ":( program is free of memory errors valgrind tests failed; see log for more information."
Here is my code:
// Implements a dictionary's functionality
#include <ctype.h>
#include <stdbool.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include <stdio.h>
#include "dictionary.h"
// Represents a node in a hash table
typedef struct node
{
char word[LENGTH + 1];
struct node *next;
}
node;
// TODO: Choose number of buckets in hash table
const unsigned int N = 26;
// Hash table
node *table[N];
//Declare variables
unsigned int word_count;
unsigned int hash_value;
// Returns true if word is in dictionary, else false
bool check(const char *word)
{
// TODO
hash_value = hash(word);
node *cursor = table[hash_value];
// Go in link list
while (cursor != 0)
{
if (strcasecmp(word, cursor->word) == 0)
{
return true;
}
cursor = cursor->next;
}
return false;
}
// Hashes word to a number
unsigned int hash(const char *word)
{
// TODO: Improve this hash function
unsigned long total = 0;
for (int i = 0; i < strlen(word); i++)
{
total += tolower(word[i]);
}
return total % N;
}
// Loads dictionary into memory, returning true if successful, else false
bool load(const char *dictionary)
{
// Open dictionary
FILE *file = fopen(dictionary, "r");
// it would be null if cant be open
if (file == NULL)
{
printf("Unable to open %s\n", dictionary);
return false;
}
// Declare variable words
char word[LENGTH + 1];
//Scan dictionary for strings up until EOF
while (fscanf(file, "%s", word) != EOF)
{
node *n = malloc(sizeof(node));
if (n == NULL)
{
return false;
}
//copy wordds into node
strcpy(n->word, word);
hash_value = hash(word);
n->next = table[hash_value];
table[hash_value] = n;
word_count++;
}
fclose(file);
return true;
}
// Returns number of words in dictionary if loaded, else 0 if not yet loaded
unsigned int size(void)
{
if (word_count > 0)
{
return word_count;
}
return 0;
}
// Unloads dictionary from memory, returning true if successful, else false
bool unload(void)
{
for (int i = 0; i < N; i++)
{
node *cursor = table[i];
while (cursor)
{
node *tmp = cursor;
cursor = cursor->next;
free(tmp);
}
if (cursor == NULL)
{
return true;
}
}
return false;
}
Here are the errors in valgrind check50:
program is free of memory errors valgrind tests failed; see log for more information.
Here is ERR log:
56 bytes in 1 blocks are still reachable in loss record 1 of 1: (file: dictionary.c, line: 80)
And 80th line code is:
while (fscanf(file, "%s", word) != EOF)
{
node *n = malloc(sizeof(node));
if (n == NULL)
{
return false;
}
unload will free one index and return to speller because of this if (cursor == NULL) block. The last node in an index should set cursor to NULL, so function is done. That conditional should be eliminated. There is really no condition in unload that should return false.

How to get memory rd/wr trace for a specific function call using PIN tools

I am trying to dump mem rd/wr trace for a specific function call from my application and after researching a bit I came across a solution to do so.
But since I am very new to PIN usage, I am not sure how to pass routine names (refer to Routine(RTN rtn, VOID *v)) from application to pin tools so that the right callback function gets trigerred. Can someone please help?
As of now If I run the given pin tools, my trace.out is empty because "!isROI" is always set to false.
#include <stdio.h>
#include "pin.H"
#include <string>
const CHAR * ROI_BEGIN = "__parsec_roi_begin";
const CHAR * ROI_END = "__parsec_roi_end";
FILE * trace;
bool isROI = false;
// Print a memory read record
VOID RecordMemRead(VOID * ip, VOID * addr, CHAR * rtn)
{
// Return if not in ROI
if(!isROI)
{
return;
}
// Log memory access in CSV
fprintf(trace,"%p,R,%p,%s\n", ip, addr, rtn);
}
// Print a memory write record
VOID RecordMemWrite(VOID * ip, VOID * addr, CHAR * rtn)
{
// Return if not in ROI
if(!isROI)
{
return;
}
// Log memory access in CSV
fprintf(trace,"%p,W,%p,%s\n", ip, addr, rtn);
}
// Set ROI flag
VOID StartROI()
{
isROI = true;
}
// Set ROI flag
VOID StopROI()
{
isROI = false;
}
// Is called for every instruction and instruments reads and writes
VOID Instruction(INS ins, VOID *v)
{
// Instruments memory accesses using a predicated call, i.e.
// the instrumentation is called iff the instruction will actually be executed.
//
// On the IA-32 and Intel(R) 64 architectures conditional moves and REP
// prefixed instructions appear as predicated instructions in Pin.
UINT32 memOperands = INS_MemoryOperandCount(ins);
// Iterate over each memory operand of the instruction.
for (UINT32 memOp = 0; memOp < memOperands; memOp++)
{
// Get routine name if valid
const CHAR * name = "invalid";
if(RTN_Valid(INS_Rtn(ins)))
{
name = RTN_Name(INS_Rtn(ins)).c_str();
}
if (INS_MemoryOperandIsRead(ins, memOp))
{
INS_InsertPredicatedCall(
ins, IPOINT_BEFORE, (AFUNPTR)RecordMemRead,
IARG_INST_PTR,
IARG_MEMORYOP_EA, memOp,
IARG_ADDRINT, name,
IARG_END);
}
// Note that in some architectures a single memory operand can be
// both read and written (for instance incl (%eax) on IA-32)
// In that case we instrument it once for read and once for write.
if (INS_MemoryOperandIsWritten(ins, memOp))
{
INS_InsertPredicatedCall(
ins, IPOINT_BEFORE, (AFUNPTR)RecordMemWrite,
IARG_INST_PTR,
IARG_MEMORYOP_EA, memOp,
IARG_ADDRINT, name,
IARG_END);
}
}
}
// Pin calls this function every time a new rtn is executed
VOID Routine(RTN rtn, VOID *v)
{
// Get routine name
const CHAR * name = RTN_Name(rtn).c_str();
if(strcmp(name,ROI_BEGIN) == 0) {
// Start tracing after ROI begin exec
RTN_Open(rtn);
RTN_InsertCall(rtn, IPOINT_AFTER, (AFUNPTR)StartROI, IARG_END);
RTN_Close(rtn);
} else if (strcmp(name,ROI_END) == 0) {
// Stop tracing before ROI end exec
RTN_Open(rtn);
RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)StopROI, IARG_END);
RTN_Close(rtn);
}
}
// Pin calls this function at the end
VOID Fini(INT32 code, VOID *v)
{
fclose(trace);
}
/* ===================================================================== */
/* Print Help Message */
/* ===================================================================== */
INT32 Usage()
{
PIN_ERROR( "This Pintool prints a trace of memory addresses\n"
+ KNOB_BASE::StringKnobSummary() + "\n");
return -1;
}
/* ===================================================================== */
/* Main */
/* ===================================================================== */
int main(int argc, char *argv[])
{
// Initialize symbol table code, needed for rtn instrumentation
PIN_InitSymbols();
// Usage
if (PIN_Init(argc, argv)) return Usage();
// Open trace file and write header
trace = fopen("roitrace.csv", "w");
fprintf(trace,"pc,rw,addr,rtn\n");
// Add instrument functions
RTN_AddInstrumentFunction(Routine, 0);
INS_AddInstrumentFunction(Instruction, 0);
PIN_AddFiniFunction(Fini, 0);
// Never returns
PIN_StartProgram();
return 0;
}

Using fgets and strtok to read in data and create linked list

Need some help with reading in lines of data from a text file using the fgets and string tokenization commands, which will then be used to create a linked list. I've followed some examples I've found on Stack Overflow and other tutorial websites, but still cannot get the read function below to work properly in my program, it just causes it to crash. The data file has lines like this:
Zucchini, Squash, pound, 2.19, 45
Yellow, Squash, pound, 1.79, 15
Based on everything I've read, I believe I have the necessary code, but obviously I'm missing something. Also, I commented out one of the fields (the one for float price) as I'm not sure what to use to copy the float value from the data, as I cannot treat it as a string (the integer value right below it seems to let me get away with it in my compiler).
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// Struct for linked list node
struct produceItem
{
char produce[20];
char type[20];
char soldBy[20];
float price;
int quantityInStock;
struct produceItem *next;
};
// Function to read in data from file to
void read(struct produceItem **head)
{
struct produceItem *temp = NULL;
struct produceItem *right = NULL;
//char ch[3];
char line[50];
char *value;
FILE *data = fopen("RecitationFiveInput.txt", "r");
printf("Trying to open file RecitationFiveInput.txt\n");
if (data == NULL)
{
printf("Could not open file RecitationFiveInput.txt\n");
}
else
{
while(fgets(line, sizeof(line), data))
{
value = strtok(line, ", ");
strcpy(temp->produce, strdup(value));
value = strtok(NULL, ", ");
strcpy(temp->type, strdup(value));
value = strtok(NULL, ", ");
strcpy(temp->soldBy, strdup(value));
//value = strtok(NULL, ", ");
//strcpy(temp->price, strdup(value));
value = strtok(NULL, " \n");
strcpy(temp->quantityInStock, strdup(value));
temp->next = NULL;
if (*head == NULL)
{
*head = temp;
}
else
{
right = *head;
while(right->next != NULL)
{
right = right->next;
}
right->next = temp;
}
}
printf("Successfully opened file RecitationFiveInput.txt\n");
}
fclose(data);
return;
}
// Function to display the nodes of the linked list that contains the data from the data file
void display(struct produceItem *head)
{
int value = 1;
struct produceItem *temp = NULL;
temp = head;
printf("=============================================================================\n");
printf(" Item # Produce Type Sold By Price In Stock\n");
printf("=============================================================================\n");
if(temp == NULL)
{
return;
}
else
{
while(temp != NULL)
{
printf(" %d %s %s %s %lf %d\n", value, temp->produce, temp->type, temp->soldBy, temp->price, temp->quantityInStock);
value++;
temp = temp->next;
if(temp == NULL)
{
break;
}
}
}
return;
}
//Main function
int main()
{
int input = 0;
struct produceItem *head = NULL;
while(1)
{
printf("\nList Operations\n");
printf("=================\n");
printf("1. Stock Produce Department\n");
printf("2. Display Produce Inventory\n");
printf("3. Reverse Order of Produce Inventory\n");
printf("4. Export Produce Inventory\n");
printf("5. Exit Program\n");
printf("Enter your choice: ");
if(scanf("%d", &input) <= 0)
{
printf("Enter only an integer.\n");
exit(0);
}
else
{
switch(input)
{
case 1:
read(&head);
break;
case 2:
display(head);
break;
case 3:
//function
break;
case 4:
//function
break;
case 5:
printf("You have exited the program, Goodbye!\n");
return 0;
break;
default:
printf("Invalid option.\n");
}
}
}
return 0;
}
Never mind everyone, found the issue. The crashes were due to me not allocating memory for the temp pointer in the read me function.

A question of libevent example code: how is invoked?

I'm learning libev however the code is so hard to understand, so I choose to learn libevent first whose code is relatively clearer. But I encounter a problem when try the example (http://www.wangafu.net/~nickm/libevent-book/01_intro.html).
How is the code event_add(state->write_event, NULL) in do_read() make do_write() function invoked?
/* For sockaddr_in */
#include <netinet/in.h>
/* For socket functions */
#include <sys/socket.h>
/* For fcntl */
#include <fcntl.h>
#include <event2/event.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#define MAX_LINE 16384
void do_read(evutil_socket_t fd, short events, void *arg);
void do_write(evutil_socket_t fd, short events, void *arg);
char
rot13_char(char c)
{
return c;
/* We don't want to use isalpha here; setting the locale would change
* which characters are considered alphabetical. */
if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
return c + 13;
else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
return c - 13;
else
return c;
}
struct fd_state {
char buffer[MAX_LINE];
size_t buffer_used;
size_t n_written;
size_t write_upto;
struct event *read_event;
struct event *write_event;
};
struct fd_state *
alloc_fd_state(struct event_base *base, evutil_socket_t fd)
{
struct fd_state *state = malloc(sizeof(struct fd_state));
if (!state)
return NULL;
state->read_event = event_new(base, fd, EV_READ|EV_PERSIST, do_read, state);
if (!state->read_event) {
free(state);
return NULL;
}
state->write_event =
event_new(base, fd, EV_WRITE|EV_PERSIST, do_write, state);
if (!state->write_event) {
event_free(state->read_event);
free(state);
return NULL;
}
state->buffer_used = state->n_written = state->write_upto = 0;
assert(state->write_event);
return state;
}
void
free_fd_state(struct fd_state *state)
{
event_free(state->read_event);
event_free(state->write_event);
free(state);
}
void
do_read(evutil_socket_t fd, short events, void *arg)
{
struct fd_state *state = arg;
char buf[1024];
int i;
ssize_t result;
while (1) {
assert(state->write_event);
result = recv(fd, buf, sizeof(buf), 0);
if (result <= 0)
break;
for (i=0; i < result; ++i) {
if (state->buffer_used < sizeof(state->buffer))
state->buffer[state->buffer_used++] = rot13_char(buf[i]);
if (buf[i] == '\n') {
assert(state->write_event);
**event_add(state->write_event, NULL);**
state->write_upto = state->buffer_used;
}
}
}
if (result == 0) {
free_fd_state(state);
} else if (result < 0) {
if (errno == EAGAIN) // XXXX use evutil macro
return;
perror("recv");
free_fd_state(state);
}
}
void
**do_write(evutil_socket_t fd, short events, void *arg)**
{
struct fd_state *state = arg;
while (state->n_written < state->write_upto) {
ssize_t result = send(fd, state->buffer + state->n_written,
state->write_upto - state->n_written, 0);
if (result < 0) {
if (errno == EAGAIN) // XXX use evutil macro
return;
free_fd_state(state);
return;
}
assert(result != 0);
state->n_written += result;
}
if (state->n_written == state->buffer_used)
state->n_written = state->write_upto = state->buffer_used = 1;
event_del(state->write_event);
}
void
do_accept(evutil_socket_t listener, short event, void *arg)
{
struct event_base *base = arg;
struct sockaddr_storage ss;
socklen_t slen = sizeof(ss);
int fd = accept(listener, (struct sockaddr*)&ss, &slen);
if (fd < 0) { // XXXX eagain??
perror("accept");
} else if (fd > FD_SETSIZE) {
close(fd); // XXX replace all closes with EVUTIL_CLOSESOCKET */
} else {
struct fd_state *state;
evutil_make_socket_nonblocking(fd);
state = alloc_fd_state(base, fd);
assert(state); /*XXX err*/
assert(state->write_event);
event_add(state->read_event, NULL);
}
}
void
run(void)
{
evutil_socket_t listener;
struct sockaddr_in sin;
struct event_base *base;
struct event *listener_event;
base = event_base_new();
if (!base)
return; /*XXXerr*/
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = 0;
sin.sin_port = htons(40713);
listener = socket(AF_INET, SOCK_STREAM, 0);
evutil_make_socket_nonblocking(listener);
#ifndef WIN32
{
int one = 1;
setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
}
#endif
if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
perror("bind");
return;
}
if (listen(listener, 16)<0) {
perror("listen");
return;
}
listener_event = event_new(base, listener, EV_READ|EV_PERSIST, do_accept, (void*)base);
/*XXX check it */
event_add(listener_event, NULL);
event_base_dispatch(base);
}
int
main(int c, char **v)
{
setvbuf(stdout, NULL, _IONBF, 0);
run();
return 0;
}
I'm not sure if I'm answering the same question you asked - I understand it as:
How does calling event_add(state->write_event, NULL) in do_read() lead to do_write() being invoked?
The key to figuring this out is understanding what the do_read() function is actually doing. do_read() is a callback function associated with a socket which has data to be read: this is set up with allocate_fd_state():
struct fd_state *
alloc_fd_state(struct event_base *base, evutil_socket_t fd)
{
/*
* Allocate a new fd_state structure, which will hold our read and write events
* /
struct fd_state *state = malloc(sizeof(struct fd_state));
[...]
/*
* Initialize a read event on the given file descriptor: associate the event with
* the given base, and set up the do_read callback to be invoked whenever
* data is available to be read on the file descriptor.
* /
state->read_event = event_new(base, fd, EV_READ|EV_PERSIST, do_read, state);
[...]
/*
* Set up another event on the same file descriptor and base, which invoked the
* do_write callback anytime the file descriptor is ready to be written to.
*/
state->write_event =
event_new(base, fd, EV_WRITE|EV_PERSIST, do_write, state);
[...]
return state;
}
At this point, though, neither of these events have been event_add()'ed to the event_base base. The instructions for what to do are all written out, but no one is looking at them. So how does anything get read? state->read_event is event_add()'ed to the base after an incoming connection is made. Look at do_accept():
void
do_accept(evutil_socket_t listener, short event, void *arg)
{
[ ... accept a new connection and give it a file descriptor fd ... ]
/*
* If the file descriptor is invalid, close it.
*/
if (fd < 0) { // XXXX eagain??
perror("accept");
} else if (fd > FD_SETSIZE) {
close(fd); // XXX replace all closes with EVUTIL_CLOSESOCKET */
/*
* Otherwise, if the connection was successfully accepted...
*/
} else {
[ ... allocate a new fd_state structure, and make the file descriptor non-blocking ...]
/*
* Here's where the magic happens. The read_event created back in alloc_fd_state()
* is finally added to the base associated with it.
*/
event_add(state->read_event, NULL);
}
}
So right after accepting a new connection, the program tells libevent to wait until there's data available on the connection, and then run the do_read() callback. At this point, it's still impossible for do_write() to be called. It needs to be event_add()'ed. This happens in do_read():
void
do_read(evutil_socket_t fd, short events, void *arg)
{
/* Create a temporary buffer to receive some data */
char buf[1024];
while (1) {
[ ... Receive the data, copying it into buf ... ]
[ ... if there is no more data to receive, or there was an error, exit this loop... ]
[ ... else, result = number of bytes received ... ]
for (i=0; i < result; ++i) {
[ ... if there's room in the buffer, copy in the rot13() encoded
version of the received data ... ]
/*
* Boom, headshot. If we've reached the end of the incoming data
* (assumed to be a newline), then ...
*/
if (buf[i] == '\n') {
[...]
/*
* Have libevent start monitoring the write_event, which calls do_write
* as soon as the file descriptor is ready to be written to.
*/
event_add(state->write_event, NULL);
[...]
}
}
}
[...]
}
So, after reading in some data from a file descriptor, the program starts waiting until
the file descriptor is ready to be written to, and then invokes do_write(). Program
flow looks like this:
[ set up an event_base and start waiting for events ]
[ if someone tries to connect ]
[ accept the connection ]
[ ... wait until there is data to read on the connection ... ]
[ read in data from the connection until there is no more left ]
[ ....wait until the connection is ready to be written to ... ]
[ write out our rot13() encoded response ]
I hope that a) that was the correct interpretation of your question, and b) this was a helpful answer.

Resources