servicestack with funq - autowiring by convention - dependency-injection

I have a service which takes an IMyDependency in its constructor. IMyDependency, MyDependency and the service all live in the same assembly. MyDependency has a single, public, parameterless constructor.
To my surprise, this did not work:
container.RegisterAutoWired<IMyDependency>();
It throws a "System.NullReferenceException".
It works if I do this:
container.RegisterAutoWiredAs<MyDependency, IMyDependency>();
But then, so does this:
container.RegisterAs<MyDependency, IMyDependency>();
So what is the difference? If 'auto wiring' cannot find a concrete implementation, and it makes no difference to whether services requiring the dependency can be resolved, then what is auto wiring?
Is Funq supposed to be able to find your concrete implementations by convention? If so, what is that convention, if not same-named-ness?
Thanks.

Do you mean "how can I implement a solution to search through assemblies and automatically register classes in ServiceStack IOC based on a convention?"
If so, I might have a solution for you:
Create an interface that your inject-able classes will implement.
Have your inject-able classes implement that interface.
In the boot-strapping code use reflection to search your assemblies and get a list of all of the classes that implement the inject-able interface.
Use reflection to get the class name and interface based on your conventions.
Call the ServiceStack IOC method RegisterAutoWiredType and pass in the class and interface to register them.
For example if our naming convention is ClassName IClassName:
private static void RegisterCustomTypes(Container container)
{
//Get the Assembly Where the injectable classes are located.
var assembly = Assembly.GetAssembly(typeof(IInjectable));
//Get the injectable classes
var types =assembly.GetTypes()
.Where(m => m.IsClass && m.GetInterface("IInjectable") != null);
//loop through the injectable classes
foreach (var theType in types)
{
//set up the naming convention
var className = theType.Name;
var interfaceName = string.Concat("I", className);
//create the interface based on the naming convention
var theInterface = theType.GetInterface(interfaceName);
//register the type with the convention
container.RegisterAutoWiredType(theType, theInterface);
}
}
public interface IInjectable
{
}
//This class can be injected
public interface ITestManager : IInjectable
{
void Execute(int id);
}
public class TestManager : ITestManager
{
public void Execute(int id)
{
throw new System.NotImplementedException();
}
}

For simple queries like this it's best to just contact the source, e.g. here is the source code for RegisterAutoWired:
public IRegistration<T> RegisterAutoWired<T>()
{
var serviceFactory = GenerateAutoWireFn<T>();
return this.Register(serviceFactory);
}
It generates an auto-wired factory over a Concrete implementation. An interface has no implementation, it needs to be a concrete class.
And the source code for RegisterAs:
public IRegistration<TAs> RegisterAs<T, TAs>() where T : TAs
{
return this.RegisterAutoWiredAs<T, TAs>();
}
Which is just a shorter alias you can use instead of RegisterAutoWiredAs.

Related

How to dynamically instantiate a proxy class?

I have used Castle.DynamicProxy to create an interceptor that implements IInterceptor. This interceptor does some work related with logging.
I have successfully injected this into multiple classes using the default Microsoft Dependency Injection and I also was able to do so using Autofac.
Microsoft Dependency Injection:
public static void AddLoggedScoped<TService, TImplementation>(this IServiceCollection pServices)
where TService : class
where TImplementation : class, TService
{
pServices.TryAddScoped<IProxyGenerator, ProxyGenerator>();
pServices.AddScoped<TImplementation>();
pServices.TryAddTransient<LoggingInterceptor>();
pServices.AddScoped(provider =>
{
var proxyGenerator = provider.GetRequiredService<IProxyGenerator>();
var service = provider.GetRequiredService<TImplementation>();
var interceptor = provider.GetRequiredService<LoggingInterceptor>();
return proxyGenerator.CreateInterfaceProxyWithTarget<TService>(service, interceptor);
});
}
Autofac Dependency Injection:
builder.RegisterType<DITest>( ).As<IDITest>()
.EnableInterfaceInterceptors()
.InterceptedBy(typeof(LoggingInterceptorAdapter<LoggingInterceptor>));
Despite this I would also like to inject it in classes dynamically instantiated (for instances, classes that are instantiated accordingly to a value - factory pattern). My factory instantiates different concretizations of an interface depending on a value provided by parameter. Something along these lines:
public IApple Create(string color)
{
IApple fruit;
switch (color)
{
case "green":
fruit = new GreenApple();
break;
case "red":
fruit = new RedApple();
}
return fruit;
}
The interface IFruit looks like these:
public interface IFruit
{
void Cut();
void Eat();
string GetNutrionalInfo();
}
What I am trying to achieve is a way to inject/add an interceptor to the concretization of RedApple() that would allow me to know when methods such as redApple.Cut() are called.
What is the best way to do so? I was under the impression that Autofac would allow this, but I have not been successful.
What you will need to do is update your factory to use service location instead of directly constructing things. Basically, instead of using new, you'll need to use Autofac or Microsoft DI (assuming Autofac is configured as the backing container) to resolve the thing.
First, whenever you need your factory, make sure you are injecting it and not just calling new. Everything involved in this chain needs to go through Autofac.
public class UsesTheFactory
{
private IFactory _factory;
public UsesTheFactory(IFactory factory)
{
this._factory = factory;
}
}
You will, of course, need to register the thing that uses the factory.
builder.RegisterType<UsesTheFactory>();
Next, inject the lifetime scope into the factory and use it for service location. This is how you get the proxy and all that into the created objects.
public class MyFactory : IFactory
{
private readonly ILifetimeScope _scope;
public MyFactory(ILifetimeScope scope)
{
this._scope = scope;
}
public IApple Create(string color)
{
IApple fruit;
switch (color)
{
case "green":
fruit = this._scope.Resolve<GreenApple>();
break;
case "red":
fruit = this._scope.Resolve<RedApple>();
}
return fruit;
}
}
You'll need to register the factory and the things that the factory needs to resolve.
builder.RegisterType<MyFactory>().As<IFactory>();
builder.RegisterType<RedApple>();
builder.RegisterType<GreenApple>();
Finally, whenever you need something that uses the factory, that thing needs to be resolved. In this example, you can't really ever just new UsesTheFactory() - you have to resolve it (or have it injected into something else).
var builder = new ContainerBuilder();
builder.RegisterType<UsesTheFactory>();
builder.RegisterType<MyFactory>().As<IFactory>();
builder.RegisterType<RedApple>();
builder.RegisterType<GreenApple>();
var container = builder.Build();
using var scope = container.BeginLifetimeScope();
var user = scope.Resolve<UsesTheFactory>();
user.DoSomethingThatCallsTheFactory();
The key principle is that if you need that proxy injected anywhere in the pipeline, you can't use new. Full stop. If you need that thing, it needs to flow through Autofac somehow.

Ninject selecting parameterless constructor when using implicit self-binding

I am using Ninject version 3 in an MVVM-type scenario in a .NET WPF application. In a particular instance I am using a class to act as coordinator between the view and its view model, meaning the coordinator class is created first and the view and view model (along with other needed services) are injected into it.
I have bindings for the services, but I have not created explicit bindings for the view/view model classes, instead relying on Ninject's implicit self-binding since these are concrete types and not interfaces.
A conceptual version of this scenario in a console app is shown below:
class Program
{
static void Main(string[] args)
{
StandardKernel kernel = new StandardKernel();
kernel.Bind<IViewService>().To<ViewService>();
//kernel.Bind<View>().ToSelf();
//kernel.Bind<ViewModel>().ToSelf();
ViewCoordinator viewCoordinator = kernel.Get<ViewCoordinator>();
}
}
public class View
{
}
public class ViewModel
{
}
public interface IViewService
{
}
public class ViewService : IViewService
{
}
public class ViewCoordinator
{
public ViewCoordinator()
{
}
public ViewCoordinator(View view, ViewModel viewModel, IViewService viewService)
{
}
}
If you run this code as-is, the kernel.Get<> call will instantiate the ViewCoordinator class using the parameterless constructor instead of the one with the dependencies. However, if you remove the parameterless constructor, Ninject will successfully instantiate the class with the other constructor. This is surprising since Ninject will typically use the constructor with the most arguments that it can satisfy.
Clearly it can satisfy them all thanks to implicit self-binding. But if it doesn't have an explicit binding for one of the arguments it seems to first look for alternate constructors it can use before checking to see if it can use implicit self-binding. If you uncomment the explicit Bind<>().ToSelf() lines, the ViewController class will instantiate correctly even if the parameterless constructor is present.
I don't really want to have to add explicit self-bindings for all the views and view models that may need this (even though I know that burden can be lessened by using convention-based registration). Is this behavior by design? Is there any way to tell Ninject to check for implicit self-binding before checking for other usable constructors?
UPDATE
Based on cvbarros' answer I was able to get this to work by doing my own implementation of IConstructorScorer. Here's the changes I made to the existing code to get it to work:
using Ninject.Selection.Heuristics;
class Program
{
static void Main(string[] args)
{
StandardKernel kernel = new StandardKernel();
kernel.Components.RemoveAll<IConstructorScorer>();
kernel.Components.Add<IConstructorScorer, MyConstructorScorer>();
kernel.Bind<IViewService>().To<ViewService>();
ViewCoordinator viewCoordinator = kernel.Get<ViewCoordinator>();
}
}
using System.Collections;
using System.Linq;
using Ninject.Activation;
using Ninject.Planning.Targets;
using Ninject.Selection.Heuristics;
public class MyConstructorScorer : StandardConstructorScorer
{
protected override bool BindingExists(IContext context, ITarget target)
{
bool bindingExists = base.BindingExists(context, target);
if (!(bindingExists))
{
Type targetType = this.GetTargetType(target);
bindingExists = (
!targetType.IsInterface
&& !targetType.IsAbstract
&& !targetType.IsValueType
&& targetType != typeof(string)
&& !targetType.ContainsGenericParameters
);
}
return bindingExists;
}
private Type GetTargetType(ITarget target)
{
var targetType = target.Type;
if (targetType.IsArray)
{
targetType = targetType.GetElementType();
}
if (targetType.IsGenericType && targetType.GetInterfaces().Any(type => type == typeof(IEnumerable)))
{
targetType = targetType.GetGenericArguments()[0];
}
return targetType;
}
}
The new scorer just sees if a BindingExists call failed by overriding the BindingExists method and if so it checks to see if the type is implicitly self-bindable. If it is, it returns true which indicates to Ninject that there is a valid binding for that type.
The code making this check is copied from the SelfBindingResolver class in the Ninject source code. The GetTargetType code had to be copied from the StandardConstructorScorer since it's declared there as private instead of protected.
My application is now working correctly and so far I haven't seen any negative side effects from making this change. Although if anyone knows of any problems this could cause I would welcome further input.
By default, Ninject will use the constructor with most bindings available if and only if those bindings are defined (in your case they are implicit). Self-bindable types do not weight when selecting which constructor to use.
You can mark which constructor you want to use by applying the [Inject] attribute to it, this will ensure that constructor is selected.
If you don't want that, you can examine StandardConstructorScorer to see if that will fit your needs. If not, you can replace the IConstructorScorer component of the Kernel with your own implementation.

Autofac get decorated QueryHandler by convention based on constructor parameter name?

We inject IQueryHandler<TQUery,TResult> into our MVC controllers. We globally register all of these in the container
We have written a decorator that can cache the results of IQueryHandler.
We want to sometimes get cached reults and other times not from the same handler.
Is it possible to conditionally get a decorated handler based on the name of the constructor parameter. e.g. inject IQueryHandler<UnemployedQuery, IEnumerable<People>> cachedPeopleHandler if we prefix constructor parameter name with cached we actually get it wrapped with decorator?
Just trying to use a more convention over configuration approach to simplify things.
Yes it's possible to do it. Below is a simple working example on how you can achieve it:
class Program
{
public interface IQueryHandler{}
private class QueryHandler : IQueryHandler
{
}
private class CacheQueryHandler : IQueryHandler
{
}
public interface IService
{
}
private class Service : IService
{
private readonly IQueryHandler _queryHandler;
private readonly IQueryHandler _cacheQueryHandler;
public Service(IQueryHandler queryHandler, IQueryHandler cacheQueryHandler)
{
_queryHandler = queryHandler;
_cacheQueryHandler = cacheQueryHandler;
}
public override string ToString()
{
return string.Format("_queryHandler is {0}; _cacheQueryHandler is {1}", _queryHandler,
_cacheQueryHandler);
}
}
static void Main(string[] args)
{
var builder = new ContainerBuilder();
// Register the dependency
builder.RegisterType<QueryHandler>().As<IQueryHandler>();
// Register the decorator of the dependency
builder.RegisterType<CacheQueryHandler>().Keyed<IQueryHandler>("cache");
// Register the service implementation
builder.RegisterType<Service>().AsSelf();
// Register the interface of the service
builder.Register(c =>
{
var ctor = typeof (Service).GetConstructors()[0];
var parameters =
ctor.GetParameters()
.Where(p => p.Name.StartsWith("cache"))
.Select(p => new NamedParameter(p.Name, c.ResolveKeyed("cache", p.ParameterType)));
return c.Resolve<Service>(parameters);
}).As<IService>();
using (var container = builder.Build())
{
var service = container.Resolve<IService>();
Console.WriteLine(service.ToString());
Console.ReadKey();
}
}
}
Update:
Basically you need to:
1. Think up a general convention. Prefix "cache" of ctor parameter name in your case.
2. Register your dependencies as usual.
3. Register your decorators, so they don't overwrite your original dependencies and you can easily resolve them basing on your convention. e.g. Keyed, Named, via Attribute, etc.
4. Register you actual implementation of class that uses decorators
5. Register your interface that describes the class via lambda expression that has all magic inside.
Note: I provided just a simple and working example. It's on you to make it nice, easy to use and fast e.g. make it as an extension, generic, cache reflection results etc. It's not difficult anyway.
Thanks.

How to Inject properly an IDBContextFactory into a controller's inject IDomainFactory using Ninject MVC3?

Preliminaries
I'm using Ninject.MVC3 2.2.2.0 Nuget Package for injecting into my controller an implementation of a IDomain Interface that separates my Business Logic (BL) using an Factory approach.
I'm registering my Ninject Modules in the preconfigured NinjectMVC3.cs using:
private static void RegisterServices(IKernel kernel)
{
var modules = new INinjectModule[]
{
new DomainBLModule(),
new ADOModule()
};
kernel.Load(modules);
}
I'm trying to avoid the fatal curse of the diabolic Service Locator anti-pattern.
The Domain Class uses a DBContext that i'm trying to inject an interface implementation too, via an IDBContext, with the following scenario:
IDomainBLFactory:
public interface IDomainBLFactory
{
DomainBL CreateNew();
}
DomainBLFactory:
public class DomainBLFactory : IDomainBLFactory
{
public DomainBL CreateNew()
{
return new DomainBL();
}
}
In the controller's namespace:
public class DomainBLModule : NinjectModule
{
public override void Load()
{
Bind<IDomainBLFactory>().To<DomainBLFactory>().InRequestScope();
}
}
At this point i can inject the IDomainBLFactory implementation into my controller using Ninject Constructor Injection without any problem:
public class MyController : Controller
{
private readonly IDomainBLFactory DomainBLFactory;
// Default Injected Constructor
public MyController(IDomainBLFactory DomainBLFactory)
{
this.DomainBLFactory = DomainBLFactory;
}
... (use the Domain for performing tasks/commands with the Database Context)
}
Now my central problem.
In the DomainBL implementation, i will inject the dependency to a particular DBContext, in this case ADO DBContext from Entity Framework, again, using a IDBContextFactory:
IDbDataContextFactory
public interface IDbDataContextFactory
{
myADOEntities CreateNew();
}
DbDataContextFactory
public class DbDataContextFactory : IDbDataContextFactory
{
public myADOEntities CreateNew()
{
return new myADOEntities ();
}
}
ADOModule
public class ADOModule : NinjectModule
{
public override void Load()
{
Bind<IDbDataContextFactory>().To<DbDataContextFactory>().InRequestScope();
}
}
Now in the DomainBL implementation I faced the problem of injecting the necessary interface for the DBContext Object Factory:
public class DomainBL
{
private readonly IDbDataContextFactory contextFactory;
**** OPS, i tried to understand about 10+ Stackoverflow articles ***
...
}
What have I tried?
To Use the constructor Injection. But I don't know what to inject in the call for the Factory CreateNew() in the IDBContextFactory. For clear:
public class DomainBLFactory: IDomainBLFactory
{
// Here the constructor requires one argument for passing the factory impl.
public DomainBL CreateNew()
{
return new DomainBL(?????) // I need a IDBContextFactory impl to resolve.
//It's not like in the MVC Controller where injection takes place internally
//for the controller constructor. I'm outside a controller
}
}
In this Useful Post, our unique true friend Remo Gloor describes in a comment a possible solution for me, citing: "Create an interface that has a CreateSomething method that takes everything you need to create the instance and have it return the instance. Then in your configuration you implement this interface and add an IResolutionRoot to its constructor and use this instace to Get the required object."
Questions: How do I implement this in a proper way using Ninject.MVC3 and my modest Domain Class approach? How do I Resolve the IResolutionRoot without be punished for relaying in the Service Locator anti-pattern?
To Use the property injection for an IDBContexFactory. In the course of learning and reading all the contradictory points of view plus the theoretical explanations about it, I can deduce it's not a proper way of doing the injection for my DBContexFactory class code. Nevermind. It doesn't work anyway.
public class DomainBL
{
[Inject]
public IDbDataContextFactory contextFactory
{
get;
set;
}
//Doesn't works, contextFactory is null with or without parameterless constructor
.... (methods that uses contextFactory.CreateNew()....
}
Question: What am I missing? Even if this approach is wrong the property is not injecting.
Be cursed. Use a DependencyResolver and live with the stigmata. This works and I will remain in this approach until a proper solution appears for me. And this is really frustrating because the lack of knowledge in my last 10 days effort trying to understand and do things right.
public class DomainBL
{
private readonly IDbDataContextFactory contextFactory;
this.contextFactory = DependencyResolver.Current.GetService<IDbDataContextFactory>();
//So sweet, it works.. but i'm a sinner.
}
Question: Is there a big mistake in my understanding of the Factory Approach for the injection of interfaced implementations and using a Domain Driven Approach for taking apart the Business Logic? In the case I'm wrong, what stack of patterns should I implement with confidence?
I saw before a really big quantity of articles and blogs that does not ask this important question in a open a clear way.
Remo Gloor introduces the Ninject.Extensions.Factory for the Ninject 3.0.0 RC in www.planetgeek.ch/2011/12/31/ninject-extensions-factory-introduction.
Question: Will this extension work coupled with Ninject.MVC3 for general porpouse?. In such case it should be my hope for the near future.
Thank you all in advance for your guidance and remember we appreciate your kind help. I think a lot of people will find this scenario useful too.
I don't really get the purpose of your factories. Normally, you have exactly one ObjectContext instance for one request. This means you don't need the factory and can simply bind myADOEntities in Request scope and inject it into your DomainBL without adding the factories:
Bind<myADOEntities>().ToSelf().InRequestScope();
Bind<DomainBL>().ToSelf().InRequestScope();
And Yes the factory and mvc extrensions work together.
Here's an implementation of a generic IFactory to solve the problem without resorting to the ServiceLocator anti-pattern.
First you define a nice generic factory interface
public interface IFactory<T>
{
T CreateNew();
}
And define the implementation which uses ninject kernel to create the objects requested
class NinjectFactory<T> : IFactory<T>
{
private IKernel Kernel;
public NinjectFactory( IKernel Kernel )
{
this.Kernel = Kernel;
}
public T CreateNew()
{
return Kernel.Get<T>();
}
}
Binding to your factory using the following
private static void RegisterServices(IKernel kernel)
{
kernel.Bind<myADOEntities>().ToSelf();
kernel.Bind<DomainBL>().ToSelf();
kernel.Bind(typeof(IFactory<>)).To(typeof(NinjectFactory<>));
}
You can now do the following in your controller.
public class MyController : Controller
{
private readonly IFactory<DomainBL> DomainBLFactory;
public MyController( IFactory<DomainBL> DomainBLFactory )
{
this.DomainBLFactory = DomainBLFactory;
}
// ... (use the Domain for performing tasks/commands with the Database Context)
}
And in your DomainBL
public class DomainBL
{
IFactory<myADOEntities> EntitiesFactory;
public DomainBL( IFactory<myADOEntities> EntitiesFactory )
{
this.EntitiesFactory = EntitiesFactory;
}
// ... (use the Entities factory whenever you need to create a Domain Context)
}

Injecting multiple constructor parameters of the same type with Ninject 2.0

I'm using Ninject 2.0 to handle DI in one of my apps and I've come across something that's confusing me. Having zero documentation doesn't help too much either to be honest.
Say I have a constructor with the signature -
ctor(IServiceFactory factory1, IServiceFactory factory2)
{
this.factory1 = factory1;
this.factory2 = factory2;
}
Although these two services implement the same interface, they are quite different implementations and are used at different times so I don't want to inject an IEnumerable<IServiceFactory>.
My question is, when I'm binding the instances, how do I tell Ninject what to inject for each?
Thanks in advance.
Update
For the sake of anyone wanting to see the code would end up after reading Remo's links,...Here it is in brief. (I never realised C# had parameter attributes!)
//abstract factory
public interface IServiceFactory
{
Service Create();
}
//concrete factories
public class Service1Factory : IServiceFactory
{
public IService Create()
{
return new Service1();
}
}
public class Service2Factory : IServiceFactory
{
public IService Create()
{
return new Service2();
}
}
//Binding Module (in composition root)
public class ServiceFactoryModule : NinjectModule
{
public override void Load()
{
Bind<IServiceFactory>()
.To<Service1Factory>()
.Named("Service1");
Bind<IServiceFactory>()
.To<Service2Factory>()
.Named("Service2");
}
}
//consumer of bindings
public class Consumer(
[Named("Service1")] service1Factory,
[Named("Service2")] service2Factory)
{
}
First of all you have to ask yourself if using the same interface is correct if the implementations need to do a completely different thing. Normally, the interface is the contract between the consumer and the implementation. So if the consumer expects different things then you might consider to define different interfaces.
If you decide to stay with the same interface than you have to use conditional bindings. See the documentation about how this is done:
https://github.com/ninject/ninject/wiki/Contextual-Binding
https://github.com/ninject/ninject/wiki/Conventions-Based-Binding

Resources