ruby, rails, constants, resque - ruby-on-rails

I have a bunch of classes that are resque jobs and I just noticed I have a constant defined in each named RECEIVER which contains the email distribution list for the jobs results.
What is the default behavior in ruby/rails if I have a constant RECEIVER = "emails" and have it defined in multiple classes. Each class assigns the value of RECEIVER to an instance of the class upon initialization.
Just trying to think of the best way to refactor something like this. thank you

It gets defined in each class separately. The best way to refactor to prevent code duplication would be to use a module
module CommonMethods
RECEIVER = "emails"
end
and then in your class:
class SomeClass
include CommonMethods
#do stuff
end
That way the email list is only defined in one place.
You could also define other methods in here that are common to all of your classes.

Related

Ruby/Rails - force subclasses to override specific methods?

I'm wondering if there is a way to force a subclass to override a method from its parent method in either Ruby or Rails (in Java you would do this with an abstract class/method).
Let's say I have the following classes:
class Pet
end
class Dog < Pet
def collar_color
"red"
end
end
class Cat < Pet
end
dog = Dog.new
dog.collar_color
==> red
cat = Cat.new
cat.collar_color
==> NoMethodError
In this example I would never instantiate a Pet object, but it exists to serve as a way to collect common methods to common classes. But let's say I want to ensure that all subclasses of Pet override the collar_color method. Is there a way to do that? Could I achieve it through testing in some way? Assume I don't want a default defined in the parent class.
My real-life use case is a collection of classes that all have polymorphic ownership of another class. If I have a display page of the owned class, then one of the owner classes not having a method could leave me with a NoMethodError problem.
No, there is no way to enforce this.
I can guarantee you, whatever idea you can come up with, it will break in some way.
First off: doing this statically is out of the question. Determining whether a method is overridden or not is known to be equivalent to solving the Halting Problem.
So, you have to do it dynamically. But even that is going to be problematic.
For example: you could implement the inherited hook and check whether every class that inherits from Pet implements the method. But, that will prevent someone from inheriting their own abstract class. (Also, there is no guarantee when the inherited hook will run – it could run when the class is opened, i.e. before the methods are defined.)
Also, even if you can check that the method exists at the point where a class inherits Pet, the method can still be removed again later, so you don't get any guarantees. And, of course, they can just provide a dummy method, in order to get around your protection.
You could create default implementations of the methods that just raise an Exception, but there is no need to do that: if you don't create a default implementation, that will already raise a NoMethodError exception anyway. (If you do go down this route, do not use NotImplementedError. Instead, use a custom exception that inherits from RuntimeError.)
There are examples of this in the core library: for example, the Enumerable mixin depends on an abstract method each that must be implemented by subclasses. And the way this is handled is by simply documenting that fact:
Usage
To use module Enumerable in a collection class:
Include it:
include Enumerable
Implement method #each which must yield successive elements of the collection. The method will be called by almost any Enumerable method.
That is actually the way any type-related issues have been dealt with in Ruby since the beginning. Since Ruby does not have types, typing only happens in the programmer's head and type information is only written down in documentation.
There always were informal third-party type annotation languages that were used by various IDEs. More recently, two type annotation languages have been introduced: RBI, a third-party type annotation language used by the Sorbet type checker, and RBS, a type annotation language that is part of Ruby proper.
As far as I know, RBS has no way of expressing abstract methods, but RBI does:
class Pet
extend T::Sig
extend T::Helpers
interface!
sig {abstract.returns(String)}
def collar_color; end
end
This will give you a type error if there is object instantiated from a subclass that does not at some point in the inheritance chain define the method. But, of course, only if the user of the code actually type-checks the code using a type-checker like Sorbet. If the user of the code does not type-check it, they will not get a type error.
Ruby has relatively few keywords but it provides the basic building blocks to implement something that vaguely resembles abstract classes or methods.
In its simplest form you just raise an error in the parent "abstract" method:
class AbstractMethodError < StandardError
def initialize(klass, m)
super("Expected #{klass} to implement #{m}")
end
end
class Pet
def collar_color
raise AbstractMethodError.new(self.class, __method__)
end
end
class Cat < Pet
end
Cat.new.collar_color # Expected Cat to implement collar_color (AbstractMethodError)
__method__ is a magic variable that contains the name of the current method.
You can make this a bit more elegant by creating a class method that defines the "abstract method":
module Abstractions
def abstract_method(name)
define_method(name) do
raise AbstractMethodError.new(self.class, __method__)
end
end
end
class Pet
extend Abstractions
abstract_method :collar_color
end
However Ruby is a dynamic langauge and you don't have a compile time check so this will only give a slightly more obvious error message when the method is called. It doesn't actually give any guarentees that subclasses implement the method.
That is down to testing or using type checkers like Sorbet or RBS. In general it might be helpful when learning to forget everything you think you know about Object Oriented Programming and learn the Ruby way. It has a very different design philophy compared to Java - instead of abstract methods and interfaces you use duck typing to see if the object responds to that method.
Just define the default method implementation in the abstract class by raising Not implemented error or something. By doing that you also clarifies in your class design that when others / you want to inherit the Pet class they need to override collar_color method. Clarity is a good think and there is no benefit in not defining a default method in the abstract class.
Or if you want to achieve that by testing you can create a test case for Pet class that check if its descendants is defining their own collar_color method or not. I think Rails / Ruby 3.1 have .descendants methods defined or you can just google them.
# Pet_spec.rb
describe "descendants must implement collar_color" do
it "should not throw error" do
descendants = Pet.descendants
descendants.each do |descendant|
expect { descendant.new.collar_color }.to.not raise_error
end
end
end

What are before_create, validates_presence_of, has_many etc?

I understand what these statements do, but not how to refer to them. They exist within a class, outside of that class's methods and perform a variety of functions.
Collectively, what are they called?
These methods are really just class methods. Try this:
class Test
def self.before_create
puts "before_create"
end
before_create
end
The specific use case you mentioned - Rails DSL methods such as before_create, that are only available inside a class body — are often called class macros. Rubys metaprogramming abilities give you multiple ways to build them. A simple one is to make them private:
module Foo
private
def before_create
puts "before_create"
end
end
class Bar
extend Foo
before_create
end
before_create is now accessible inside the class body, but not from outside:
Bar.before_create
NoMethodError: private method `before_create' called for Bar:Class
In pure Ruby terms, they are all just method calls.
However, they do have a common theme. In the way they are constructed and used, you could consider them part of a Domain-Specific Language (DSL) - the ones you list are part of Active Record's DSL for creating data models.
Ruby lends itself well to creating DSL-like mini languages, using mix-ins or a base class in order to provide a set of class methods, which in turn will store data or create methods on the class and instances of it using meta-programming techniques.

Rails uppercase/lowercase object

This is a fairly basic Ruby/Rails question but I'm not sure why it makes a difference if you call a class of an object in some circumstances vs calling an instance of that object in different places of the framework.
Say you have a model e.g. Product and you call Product.new you have a new instance of the class. But if you have certain methods that are defined in the model I only seem to be able to access these if I call the Class rather than an instance e.g. Product.where(param, param). But I cannot call product.where(param, param) - why is this?
There are two types of methods: Class methods, and instance methods. You must call the appropriate method on the right object.
class Product
def self.foo
# class method, only callable on Product
end
def name
# instance method, callable on an instance of Product.
end
end
If you attempt to call an instance method on a class, or vice versa, you'll see an undefined method error.
To use someone else's analogy, imagine a house and a blue print; the class is a blue print for an object, while a house would represent the instance. An instance of that class will have its own set of attributes (wall colour, window type, etc...).
What would this mean?
p = Product.find(1)
p.where('something == 2')
That doesn't make any sense, you have an instance, what are you querying for? Good API design results in methods defined where they make sense.

What's the difference between sending :include to class and directly defining method in second class definition?

Recently I had to add a method to Redmine's core class. I was unable to use inheritance, so I've done something like this:
require_dependency 'time_entry_query'
class TimeEntryQuery < Query
def my_new_method(foo, bar)
end
end
and it works perfectly - my method is added to all new objects. However, I've seen someone declaring the new method in their own module instead and then sending :include to class, so it become a mixin. Here's an example:
module Patches
module SomeClassPatch
def my_new_method
end
end
and somewhere in app's initialization:
SomeClass.send(:include, Patches::SomeClassPatch) unless SomeClass.include? (Patches::SomeClassPatch)
What's difference between these two methods and which one should I use?
There are two differences:
When you use a mixin, there is a clear place where your "patch" methods can live. If I wonder "Hmm, where's this my_new_method" coming from, and I look at, say, TimeEntryQuery.ancestors or TimeEntryQuery.instance_method(:my_new_method).owner, that will return Patches::SomeClassPatch. So I know I have to look for a file named lib/patches/some_class_patch.rb somewhere to find where it is probably defined. (I could try source_location as well, but that is not always reliable.)
Mixing in a module into a class makes the module the superclass of the class it is being mixed into. So, if there already is a my_new_method defined in TimeEntryQuery, your first option will overwrite it, whereas in your second option, your method will become the super method of that method. IOW: with your second option, your new method won't be called unless the already existing method calls super.

initializing a class with config (yaml), and setting a variable that should be a single instance

I am getting confused as to how to properly set variables in a initializer, I want these to be class level variables, not instance.
And I also want to then create a single instance of another object (it is a connection object, which already has connection pooling built in, so I just need a single reference to it).
My initializer /initializers/my_class.rb
yml = YAML.load_file("#{Rails.root}/config/my_class.yml")
MYMODULE::MyClass.init(yml)
And here is my my_class.rb:
module MYMODULE
class MyClass
def self.init(yml)
#post_url = yml["defaults"]["post_url"]
end
def self.post_url
#post_url
end
# this should be a single instance
def connection_pool
# ???
end
end
end
These class level variables, how can I access them from both class methods and instance methods?
I'm getting wierd behaviour, and I'm confused as to how to reference the post_url from inside of either class methods and instance methods.
I have seen the following ways, unsure which is correct:
self.class.post_url
MyClass.post_url
#post_url
post_url
self.post_url
self.class.post_url or MyClass.post_url will work. The difference is how they work for subclasses (in the former case, subclasses will use their own version of this variable automatically, in the latter, they would share the variable in MyClass).
There is no way to directly access class instance variables from an instance: you have to call a class method which returns (or sets) them. See also: cattr_accessor.
That said, if this is really a singleton, it seems a little strange to me that you would configure part of it on the class, and then reference that info in the (single) instance. Wouldn't it make more sense just to configure this stuff on the instance? Or use a module as a singleton and not create an instance at all?

Resources