Can Z3 output "anything" for unconstrained values of UF? - z3

Some values of uninterpreted functions can be unconstrained during the search. For example, if in smt query only f(1) is called, then f(2), f(3) can be anything. Is there a way (some option may be) to know which values were not used during the solving and therefore can be anything?

For quantifier free problems, you can achieve that by using the option :model-partial to true.
Here is an example (also available here):
(set-option :model-partial true)
(declare-fun f (Int) Int)
(assert (> (f 0) 0))
(assert (< (f 1) 0))
(check-sat)
(get-model)
In this example, we get the output:
sat
(model
(define-fun f ((x!1 Int)) Int
(ite (= x!1 0) 1
(ite (= x!1 1) (- 1)
#unspecified)))
)
BTW, in the next release (Z3 4.3.2), this option is renamed to :model.partial. In the next release, the options are grouped in modules.

Related

Z3; Simplify with if-then-else

Is there a way to simplify the following expression to "6 < var"?
According to Z3, these expressions are equivalent but simplification does not produce the latter.
I have tried the three parameters since they seem to be related to if-then-else but this also did not help.
(declare-fun var () Int)
(simplify
(exists ((bx Int))
(and
(exists ((byX Int))
(ite (> bx 5) (= byX 0) (&& (> bx 2) (= byX (+ byX 4)))))
(= bx (+ var 1))
(> var 6)
)
)
:push_ite_arith true
:pull_cheap_ite true
:ite_extra_rules true
)
(assert
(not
(iff
(exists ((bx Int))
(and
(exists ((by Int))
(ite (> bx 5) (= by 0) (&& (> bx 2) (= by (+ by 4)))))
(= bx (+ var 1))
(> var 6)
)
)
(< 6 var)
)
)
)
(check-sat)
Not in general, no.
Z3's simplifications and what you would consider "simple" are typically not the same, and it works more or less as a black-box. It won't produce output like what you would get from a symbolic math package or alike: The simplifications are more geared towards making the input "simpler" for further solving; not for "presenting it back to the user" purpose.
You can find many similar questions on stack-overflow, see: https://stackoverflow.com/search?q=%5Bz3%5D+simplify and in particular this answer from Leo: simplification in Z3

How to deal with recursive function in Z3?

(set-option :smt.mbqi true)
(declare-fun R(Int) Int)
(declare-const a Int)
(assert (= (R 0) 0))
(assert (forall ((n Int)) (=> (> n 0) (= (R n ) (+ (R (- n 1)) 1)))))
(assert (not (= a 5)))
(assert (not (= (R a) 5)))
(check-sat)
I have tried the above code in Z3,But Z3 unable to answer.Can you please guide me where i have made the mistake ?
As a general pattern don't expect MBQI to produce models
involving functions that
only have an infinite range of different values.
If you really must, then you can use the define-fun-rec construct to define
a recursive function. Z3 currently trusts that the definition
is well-formed (e.g., that the equation corresponding to the function
definition is satisfiable).
(set-option :smt.mbqi true)
(declare-fun F (Int) Int)
(define-fun-rec R ((n Int)) Int
(if (= n 0) 0
(if (> n 0) (+ (R (- n 1)) 1)
(F n))))
(declare-const a Int)
(assert (not (= a 5)))
(assert (not (= (R a) 5)))
(check-sat)
(get-model)
Z3 uses recursively defined functions passively during search: whenever
there is a candidate model for the ground portion of the constraints, it
checks that the function graph is adequately defined on the values of the candidate model. If it isn't, then the function definition is instantiated on the selected values until it is well defined on the values that are relevant
to the ground constraints.

z3 4.3.2 fails to find a model for Why3-generated (satisfiable) goals

I'm trying to use Why3's Z3 back-end in order to retrieve models that can then be used to derive test cases exhibiting bugs in programs. However, Z3 version 4.3.2 seems unable to answer sat for any Why3 goal. It looks like some of the axiomatic definitions used by Why3 somehow confuse Z3. For instance, the following example (which is a tiny part of what Why3 generates)
(declare-fun abs1 (Int) Int)
;; abs_def
(assert
(forall ((x Int)) (ite (<= 0 x) (= (abs1 x) x) (= (abs1 x) (- x)))))
(check-sat)
results in timeout with the following command line:
z3 -smt2 model.partial=true file.smt2 -T:10
On the other hand, changing the definition to
(declare-fun abs1 (Int) Int)
;; abs_def
(assert
(forall ((x Int)) (=> (<= 0 x) (= (abs1 x) x))))
(assert
(forall ((x Int)) (=> (> 0 x) (= (abs1 x) (- x)))))
will get me a model (which looks pretty reasonable)
(model
(define-fun abs1 ((x!1 Int)) Int
(ite (>= x!1 0) x!1 (* (- 1) x!1)))
)
but if I try to add the next axiom present in the original Why3 file, namely
;; Abs_pos
(assert (forall ((x Int)) (<= 0 (abs1 x))))
again Z3 answers timeout.
Is there something I'm missing in the configuration of Z3? Moreover, in previous versions of Why3, there was an option MODEL_ON_TIMEOUT, which allowed to retrieve a model in such circumstances. Even though there was no guarantee that this was a real model since Z3 could not finish to check it, in practice such models generally contained all the information I needed. However, I haven't found a similar option in 4.3.2. Does it still exist?
Update The last axiom Abs_pos was wrong (I toyed a bit with Why3's output before posting here and ended up pasting an incorrect version of the issue). This is now fixed.
The additional axiom
(assert (not (forall ((x Int)) (<= 0 (abs1 x)))))
makes the problem unsatisfiable, since abs1 always returns a non-negative integer and with the additional axiom you require the existence of a negative result for abs1 for some x. The web version of Z3 returns unsat as expected, see here.

Calculating Absolute Value in Z3

I have 3 variables a, b and c. I need to calculate c = absolute(b-a).
I encode this statement in Z3 as
(assert (>= c 0))
(assert (or (= c (- a b) (= c (- b a))))
I was thinking, is there a more efficient way of writing it in Z3?
Does Z3 have internal support for calculating absolute value?
Also, I hope there won't be any performance penalty for writing code like this, rather than using some other way.
Your encoding is correct. However, users usually encode the absolute value function using
(define-fun absolute ((x Int)) Int
(ite (>= x 0) x (- x)))
Then, they can write constraints such as:
(assert (= c (absolute (- a b))))
Here is the complete example (also available online at rise4fun):
(define-fun absolute ((x Int)) Int
(ite (>= x 0) x (- x)))
(declare-const a Int)
(declare-const b Int)
(declare-const c Int)
(assert (= a 3))
(assert (= b 4))
(assert (= c (absolute (- a b))))
(check-sat)
(get-model)

Quantifier in Z3

Basically, I want to ask Z3 to give me an arbitrary integer whose value is greater than 10. So I write the following statements:
(declare-const x (Int))
(assert (forall ((i Int)) (> i 10)))
(check-sat)
(get-value(x))
How can I apply this quantifier to my model? I know you can write (assert (> x 10)) to achieve this. But I mean I want a quantifier in my model so every time I declare an integer constant whose value is guaranteed to be over 10. So I don't have to insert statement (assert (> x 10)) for every integer constant that I declared.
When you use (assert (forall ((i Int)) (> i 10))), i is a bounded variable and the quantified formula is equivalent to a truth value, which is false in this case.
I think you want to define a macro using quantifiers:
(declare-fun greaterThan10 (Int) Bool)
(assert (forall ((i Int)) (= (greaterThan10 i) (> i 10))))
And you can use them to avoid code repetition:
(declare-const x (Int))
(declare-const y (Int))
(assert (greaterThan10 x))
(assert (greaterThan10 y))
(check-sat)
It is essentially the way to define macros using uninterpreted functions when you're working with Z3 API. Note that you have to set (set-option :macro-finder true) in order that Z3 replaces universal quantifiers with bodies of those functions.
However, if you're working with the textual interface, the macro define-fun in SMT-LIB v2 is an easier way to do what you want:
(define-fun greaterThan10 ((i Int)) Bool
(> i 10))

Resources