NServiceBus Dependency Injection - dependency-injection

I've been having a bit of trouble with this.
Andreas Öhlund answered a question on it here, but I've been unable to get it to work using the advice he gave.
Here's my setup:
public abstract class CommandHandler<T> : IHandleMessages<T>, IDomainReadRepository where T : Command
{
public IDomainRepository DomainRepository { get; set; }
protected abstract void OnProcess(T command);
public TAggregate GetById<TAggregate>(Guid id) where TAggregate : IEventProvider, new()
{
return DomainRepository.GetById<TAggregate>(id);
}
public void Handle(T message)
{
OnProcess(message);
// Domain repository will save.
}
}
The idea is specific command handlers override the OnProcess method and do their thing, then the DomainRepository will save everything.
Here is how I've registered the components:
public class EndpointConfig : IConfigureThisEndpoint, AsA_Server, IWantCustomInitialization
{
public void Init()
{
Configure.With().DefiningCommandsAs(c => c.Namespace != null && c.Namespace.EndsWith("Commands"));
Configure.Instance.DefaultBuilder().Configurer.ConfigureComponent<DomainRepository>(DependencyLifecycle.InstancePerCall);
Configure.Instance.DefaultBuilder().Configurer.ConfigureComponent<EventStore.Sql.EventStore>(DependencyLifecycle.InstancePerCall);
Configure.Instance.DefaultBuilder().Configurer.ConfigureComponent<MongoDbObjectSecurityDescriptorRepository>(DependencyLifecycle.InstancePerCall);
Configure.Instance.DefaultBuilder().Configurer.ConfigureComponent<LocalTenantConfig>(DependencyLifecycle.InstancePerCall);
}
}
Those are all the objects down the chain that are used by the DomainRepository; however, when I receive a command, the DomainRepository is null. If I comment out the lines to register the objects that DomainRepository needs, I'll actually get an error saying it failed to create it (Autofac DependencyResolutionException).
It should be noted that all the other objects use constructor injection (they're taken from a previously existing project). I tried changing them to use public property injection, but it didn't make any difference.
It would be much appreciated if somebody could point out what I'm doing wrong here!

Move the code in your init method into a different class which implements INeedInitialization. In there, use Configure.Instance instead of Configure.With() and also instead of Configure.Instance.DefaultBuilder().

Related

Dynamic Constructor Injection using IWindsorInstaller

I'm not sure if this is possible, but I though I'd ask the question anyway.
I have a scenario where I have a number of different tasks which send emails during processing.
The sending of emails is done via a custom class
public interface IEmailProvider
{
void SendEmail(some params);
}
public class EmailProvider : IEmailProvider
{
private readonly IEmailConfig _config;
public EmailProvider(IEmailConfig config)
{
_emailConfig = emailConfig;
}
public void SendEmail(some params)
{
// send the email using the params
}
}
I have some tasks which use the email provider, each providing their own implementation of IEmailConfig.
public class Task1 : ICommand
{
public Task1(IEmailProvider emailProvider)
{}
}
public class Task2 : ICommand
{
public Task2(IEmailProvider emailProvider)
{}
}
This is a basic example of my set up
public class TestInstaller : IWindsorInstaller
{
public void Install(IWindsorContainer container, IConfigurationStore store)
{
// Default email provider set up
container.Register(Component.For<IEmailProvider>().ImplementedBy<EmailProvider>()
.Named("DefaultEmailProvider")
.LifeStyle.Transient);
// Task 1 email config set up
container.Register(Component.For<IEmailConfig>().ImplementedBy<Task1EmailConfig>()
.Named("Task1EmailConfig"));
// Task 2 email config set up
container.Register(Component.For<IEmailConfig>().ImplementedBy<Task2EmailConfig>()
.Named("Task2EmailConfig"));
// Task 1 set up
container.Register(Component.For<ICommand>().ImplementedBy<Task1>()
.Named("Task1Command"));
// Task 2 set up
container.Register(Component.For<ICommand>().ImplementedBy<Task2>()
.Named("Task2Command"));
}
}
Is there a way I can make a decision, as each ICommand implementation is being resolved, as to which implementation of IEmailConfig to pass into the constructor of the EmailProvider class?
At the moment I register an EmailProvider instance for each task using the ServiceOverride functionality. This means that for each task that need to send emails, I have to almost duplicate the set up of the email provider and it's required config. I end up with something list this...
Component.For<IEmailConfig>()
.ImplementedBy<Task1EmailConfig>()
.Named("Task1EmailConfig"));
Component.For<IEmaiProvider>()
.ImplementedBy<EmailProvider>)
.Named("Task1EmailProvider")
.DependsOn(ServiceOverride.ForKey("config").Eq("Task1Config"));
Component.For<ICommand>()
.ImplementedBy<Task1>()
.DependsOn(ServiceOverride.ForKey("emailProvider").Eq("Task1EmailProvider")));
This will all be duplicated for each task.
The IEmailProvider implementation is always the same, it's only the IEmailConfig passed in that changes for each different task. I can't help thinking there must be a neater solution to the one I've got so far.
I think a couple of handler selectors would work for what you want. One for IEmailProvider and one for ICommand.
The IEmailProvider one could check the name of the IEmailProvider being activated (like "Task1EmailProvider") and strip off the "Provider" and add on "Config" -- which would give you the key "Task1EmailConfig" which could be used to resolve the particular IEmailConfig object.
Likewise, do the same thing for ICommand's. It would rely on you naming your IEmailConfig's consistently, but it would eliminate all of that hand-wiring you're doing now.

How to Inject properly an IDBContextFactory into a controller's inject IDomainFactory using Ninject MVC3?

Preliminaries
I'm using Ninject.MVC3 2.2.2.0 Nuget Package for injecting into my controller an implementation of a IDomain Interface that separates my Business Logic (BL) using an Factory approach.
I'm registering my Ninject Modules in the preconfigured NinjectMVC3.cs using:
private static void RegisterServices(IKernel kernel)
{
var modules = new INinjectModule[]
{
new DomainBLModule(),
new ADOModule()
};
kernel.Load(modules);
}
I'm trying to avoid the fatal curse of the diabolic Service Locator anti-pattern.
The Domain Class uses a DBContext that i'm trying to inject an interface implementation too, via an IDBContext, with the following scenario:
IDomainBLFactory:
public interface IDomainBLFactory
{
DomainBL CreateNew();
}
DomainBLFactory:
public class DomainBLFactory : IDomainBLFactory
{
public DomainBL CreateNew()
{
return new DomainBL();
}
}
In the controller's namespace:
public class DomainBLModule : NinjectModule
{
public override void Load()
{
Bind<IDomainBLFactory>().To<DomainBLFactory>().InRequestScope();
}
}
At this point i can inject the IDomainBLFactory implementation into my controller using Ninject Constructor Injection without any problem:
public class MyController : Controller
{
private readonly IDomainBLFactory DomainBLFactory;
// Default Injected Constructor
public MyController(IDomainBLFactory DomainBLFactory)
{
this.DomainBLFactory = DomainBLFactory;
}
... (use the Domain for performing tasks/commands with the Database Context)
}
Now my central problem.
In the DomainBL implementation, i will inject the dependency to a particular DBContext, in this case ADO DBContext from Entity Framework, again, using a IDBContextFactory:
IDbDataContextFactory
public interface IDbDataContextFactory
{
myADOEntities CreateNew();
}
DbDataContextFactory
public class DbDataContextFactory : IDbDataContextFactory
{
public myADOEntities CreateNew()
{
return new myADOEntities ();
}
}
ADOModule
public class ADOModule : NinjectModule
{
public override void Load()
{
Bind<IDbDataContextFactory>().To<DbDataContextFactory>().InRequestScope();
}
}
Now in the DomainBL implementation I faced the problem of injecting the necessary interface for the DBContext Object Factory:
public class DomainBL
{
private readonly IDbDataContextFactory contextFactory;
**** OPS, i tried to understand about 10+ Stackoverflow articles ***
...
}
What have I tried?
To Use the constructor Injection. But I don't know what to inject in the call for the Factory CreateNew() in the IDBContextFactory. For clear:
public class DomainBLFactory: IDomainBLFactory
{
// Here the constructor requires one argument for passing the factory impl.
public DomainBL CreateNew()
{
return new DomainBL(?????) // I need a IDBContextFactory impl to resolve.
//It's not like in the MVC Controller where injection takes place internally
//for the controller constructor. I'm outside a controller
}
}
In this Useful Post, our unique true friend Remo Gloor describes in a comment a possible solution for me, citing: "Create an interface that has a CreateSomething method that takes everything you need to create the instance and have it return the instance. Then in your configuration you implement this interface and add an IResolutionRoot to its constructor and use this instace to Get the required object."
Questions: How do I implement this in a proper way using Ninject.MVC3 and my modest Domain Class approach? How do I Resolve the IResolutionRoot without be punished for relaying in the Service Locator anti-pattern?
To Use the property injection for an IDBContexFactory. In the course of learning and reading all the contradictory points of view plus the theoretical explanations about it, I can deduce it's not a proper way of doing the injection for my DBContexFactory class code. Nevermind. It doesn't work anyway.
public class DomainBL
{
[Inject]
public IDbDataContextFactory contextFactory
{
get;
set;
}
//Doesn't works, contextFactory is null with or without parameterless constructor
.... (methods that uses contextFactory.CreateNew()....
}
Question: What am I missing? Even if this approach is wrong the property is not injecting.
Be cursed. Use a DependencyResolver and live with the stigmata. This works and I will remain in this approach until a proper solution appears for me. And this is really frustrating because the lack of knowledge in my last 10 days effort trying to understand and do things right.
public class DomainBL
{
private readonly IDbDataContextFactory contextFactory;
this.contextFactory = DependencyResolver.Current.GetService<IDbDataContextFactory>();
//So sweet, it works.. but i'm a sinner.
}
Question: Is there a big mistake in my understanding of the Factory Approach for the injection of interfaced implementations and using a Domain Driven Approach for taking apart the Business Logic? In the case I'm wrong, what stack of patterns should I implement with confidence?
I saw before a really big quantity of articles and blogs that does not ask this important question in a open a clear way.
Remo Gloor introduces the Ninject.Extensions.Factory for the Ninject 3.0.0 RC in www.planetgeek.ch/2011/12/31/ninject-extensions-factory-introduction.
Question: Will this extension work coupled with Ninject.MVC3 for general porpouse?. In such case it should be my hope for the near future.
Thank you all in advance for your guidance and remember we appreciate your kind help. I think a lot of people will find this scenario useful too.
I don't really get the purpose of your factories. Normally, you have exactly one ObjectContext instance for one request. This means you don't need the factory and can simply bind myADOEntities in Request scope and inject it into your DomainBL without adding the factories:
Bind<myADOEntities>().ToSelf().InRequestScope();
Bind<DomainBL>().ToSelf().InRequestScope();
And Yes the factory and mvc extrensions work together.
Here's an implementation of a generic IFactory to solve the problem without resorting to the ServiceLocator anti-pattern.
First you define a nice generic factory interface
public interface IFactory<T>
{
T CreateNew();
}
And define the implementation which uses ninject kernel to create the objects requested
class NinjectFactory<T> : IFactory<T>
{
private IKernel Kernel;
public NinjectFactory( IKernel Kernel )
{
this.Kernel = Kernel;
}
public T CreateNew()
{
return Kernel.Get<T>();
}
}
Binding to your factory using the following
private static void RegisterServices(IKernel kernel)
{
kernel.Bind<myADOEntities>().ToSelf();
kernel.Bind<DomainBL>().ToSelf();
kernel.Bind(typeof(IFactory<>)).To(typeof(NinjectFactory<>));
}
You can now do the following in your controller.
public class MyController : Controller
{
private readonly IFactory<DomainBL> DomainBLFactory;
public MyController( IFactory<DomainBL> DomainBLFactory )
{
this.DomainBLFactory = DomainBLFactory;
}
// ... (use the Domain for performing tasks/commands with the Database Context)
}
And in your DomainBL
public class DomainBL
{
IFactory<myADOEntities> EntitiesFactory;
public DomainBL( IFactory<myADOEntities> EntitiesFactory )
{
this.EntitiesFactory = EntitiesFactory;
}
// ... (use the Entities factory whenever you need to create a Domain Context)
}

Injecting multiple constructor parameters of the same type with Ninject 2.0

I'm using Ninject 2.0 to handle DI in one of my apps and I've come across something that's confusing me. Having zero documentation doesn't help too much either to be honest.
Say I have a constructor with the signature -
ctor(IServiceFactory factory1, IServiceFactory factory2)
{
this.factory1 = factory1;
this.factory2 = factory2;
}
Although these two services implement the same interface, they are quite different implementations and are used at different times so I don't want to inject an IEnumerable<IServiceFactory>.
My question is, when I'm binding the instances, how do I tell Ninject what to inject for each?
Thanks in advance.
Update
For the sake of anyone wanting to see the code would end up after reading Remo's links,...Here it is in brief. (I never realised C# had parameter attributes!)
//abstract factory
public interface IServiceFactory
{
Service Create();
}
//concrete factories
public class Service1Factory : IServiceFactory
{
public IService Create()
{
return new Service1();
}
}
public class Service2Factory : IServiceFactory
{
public IService Create()
{
return new Service2();
}
}
//Binding Module (in composition root)
public class ServiceFactoryModule : NinjectModule
{
public override void Load()
{
Bind<IServiceFactory>()
.To<Service1Factory>()
.Named("Service1");
Bind<IServiceFactory>()
.To<Service2Factory>()
.Named("Service2");
}
}
//consumer of bindings
public class Consumer(
[Named("Service1")] service1Factory,
[Named("Service2")] service2Factory)
{
}
First of all you have to ask yourself if using the same interface is correct if the implementations need to do a completely different thing. Normally, the interface is the contract between the consumer and the implementation. So if the consumer expects different things then you might consider to define different interfaces.
If you decide to stay with the same interface than you have to use conditional bindings. See the documentation about how this is done:
https://github.com/ninject/ninject/wiki/Contextual-Binding
https://github.com/ninject/ninject/wiki/Conventions-Based-Binding

Structuremap constructor overloading

I have a command class that needs to have 2 constructors. However,
using structuremap it seems that I can only specify one constructor to
be used. I have solved the problem for now by subtyping the specific
command class, which each implementation implementing it's own
interface and constructor. Like the code below shows. The
ISelectCommand implements two separate interfaces for the
string constructor and the int constructor, just for the sake of
registering the two subtypes using structuremap.
However, I consider this a hack and I just wonder why is it not
possible for structuremap to resolve the constructor signature by the
type passed in as parameter for the constructor? Then I could register
the SelectProductCommand as an ISelectCommand and
instantiate it like:
ObjectFactury.With(10).Use>();
orObjectFactury.With("testproduct").Use>();
public class SelectProductCommand : ISelectCommand<IProduct>,
ICommand, IExecutable
{
private readonly Func<Product, Boolean> _selector;
private IEnumerable<IProduct> _resultList;
public SelectProductCommand(Func<Product, Boolean> selector)
{
_selector = selector;
}
public IEnumerable<IProduct> Result
{
get { return _resultList; }
}
public void Execute(GenFormDataContext context)
{
_resultList = GetProductRepository().Fetch(context,
_selector);
}
private Repository<IProduct, Product> GetProductRepository()
{
return ObjectFactory.GetInstance<Repository<IProduct,
Product>>();
}
}
public class SelectProductIntCommand: SelectProductCommand
{
public SelectProductIntCommand(Int32 id): base(x =>
x.ProductId == id) {}
}
public class SelectProductStringCommand: SelectProductCommand
{
public SelectProductStringCommand(String name): base(x =>
x.ProductName.Contains(name)) {}
}
P.s. I know how to tell structuremap what constructor map to use, but my again my question is if there is a way to have structuremap select the right constructor based on the parameter passed to the constructor (i.e. using regular method overloading).
The short answer is this post by the creator of Structuremap.
The long answer is regarding the structure you have in that piece of code. In my view, a command is by definition a "class" that does something to an "entity", i.e it modifies the class somehow. Think CreateNewProductCommand.
Here you are using commands for querying, if I'm not mistaken. You also have a bit of a separation of concern issue floating around here. The command posted defines what to do and how to do it, which is to much and you get that kind of Service location you're using in
private Repository<IProduct, Product> GetProductRepository()
{
return ObjectFactory.GetInstance<Repository<IProduct, Product>>();
}
The way I'd structure commands is to use CreateProductCommand as a data contract, i.e it only contains data such as product information.
Then you have a CreateProductCommandHandler which implements IHandles<CreateProductCommand> with a single method Handle or Execute. That way you get better separation of concern and testability.
As for the querying part, just use your repositores directly in your controller/presenter, alternatively use the Query Object pattern
I think I solved the problem using a small utility class. This class gets the concrete type from ObjectFactory and uses this type to construct the instance according to the parameters past into the factory method. Now on the 'client' side I use ObjectFactory to create an instance of CommandFactory. The implementation of CommandFactory is in another solution and thus the 'client solution' remains independent of the 'server' solution.
public class CommandFactory
{
public ICommand Create<T>()
{
return Create<T>(new object[] {});
}
public ICommand Create<T>(object arg1)
{
return Create<T>(new[] {arg1});
}
public ICommand Create<T>(object arg1, object arg2)
{
return Create<T>(new[] {arg1, arg2});
}
public ICommand Create<T>(object arg1, object arg2, object arg3)
{
return Create<T>(new[] {arg1, arg2, arg3});
}
public ICommand Create<T>(object[] arguments)
{
return (ICommand)Activator.CreateInstance(GetRegisteredType<T>(), arguments);
}
public static Type GetRegisteredType<T>()
{
return ObjectFactory.Model.DefaultTypeFor(typeof (T));
}
}

How do I handle classes with static methods with Ninject?

How do I handle classes with static methods with Ninject?
That is, in C# one can not have static methods in an interface, and Ninject works on the basis of using interfaces?
My use case is a class that I would like it to have a static method to create an
unpopulated instance of itself.
EDIT 1
Just to add an example in the TopologyImp class, in the GetRootNodes() method, how would I create some iNode classes to return? Would I construct these with normal code practice or would I somehow use Ninject? But if I use the container to create then haven't I given this library knowledge of the IOC then?
public interface ITopology
{
List<INode> GetRootNodes();
}
public class TopologyImp : ITopology
{
public List<INode> GetRootNodes()
{
List<INode> result = new List<INode>();
// Need code here to create some instances, but how to without knowledge of the container?
// e.g. want to create a few INode instances and add them to the list and then return the list
}
}
public interface INode
{
// Parameters
long Id { get; set; }
string Name { get; set; }
}
class NodeImp : INode
{
public long Id
{
get { throw new NotImplementedException(); }
set { throw new NotImplementedException(); }
}
public string Name
{
get { throw new NotImplementedException(); }
set { throw new NotImplementedException(); }
}
}
// Just background to highlight the fact I'm using Ninject fine to inject ITopology
public partial class Form1 : Form
{
private ITopology _top;
public Form1()
{
IKernel kernal = new StandardKernel(new TopologyModule());
_top = kernal.Get<ITopology>();
InitializeComponent();
}
}
If you're building a singleton or something of that nature and trying to inject dependencies, typically you instead write your code as a normal class, without trying to put in lots of (probably incorrect) code managing the singleton and instead register the object InSingletonScope (v2 - you didnt mention your Ninject version). Each time you do that, you have one less class that doesnt surface its dependencies.
If you're feeling especially bloody-minded and are certain that you want to go against that general flow, the main tools Ninject gives you is Kernel.Inject, which one can use after you (or someone else) has newd up an instance to inject the dependencies. But then to locate one's Kernelm you're typically going to be using a Service Locator, which is likely to cause as much of a mess as it is likely to solve.
EDIT: Thanks for following up - I see what you're after. Here's a hacky way to approximate the autofac automatic factory mechanism :-
/// <summary>
/// Ugly example of a not-very-automatic factory in Ninject
/// </summary>
class AutomaticFactoriesInNinject
{
class Node
{
}
class NodeFactory
{
public NodeFactory( Func<Node> createNode )
{
_createNode = createNode;
}
Func<Node> _createNode;
public Node GenerateTree()
{
return _createNode();
}
}
internal class Module : NinjectModule
{
public override void Load()
{
Bind<Func<Node>>().ToMethod( context => () => Kernel.Get<Node>() );
}
}
[Fact]
public void CanGenerate()
{
var kernel = new StandardKernel( new Module() );
var result = kernel.Get<NodeFactory>().GenerateTree();
Assert.IsType<Node>( result );
}
}
The ToMethod stuff is a specific application of the ToProvider pattern -- here's how you'd do the same thing via that route:-
...
class NodeProvider : IProvider
{
public Type Type
{
get { return typeof(Node); }
}
public object Create( IContext context )
{
return context.Kernel.Get<Node>();
}
}
internal class Module : NinjectModule
{
public override void Load()
{
Bind<Func<Node>>().ToProvider<NodeProvider>();
}
}
...
I have not thought this through though and am not recommending this as A Good Idea - there may be far better ways of structuring something like this. #Mark Seemann? :P
I believe Unity and MEF also support things in this direction (keywords: automatic factory, Func)
EDIT 2: Shorter syntax if you're willing to use container-specific attributes and drop to property injection (even if Ninject allows you to override the specific attributes, I much prefer constructor injection):
class NodeFactory
{
[Inject]
public Func<Node> NodeFactory { private get; set; }
public Node GenerateTree()
{
return NodeFactory();
}
}
EDIT 3: You also need to be aware of this Ninject Module by #Remo Gloor which is slated to be in the 2.4 release
EDIT 4: Also overlapping, but not directly relevant is the fact that in Ninject, you can request an IKernel in your ctor/properties and have that injected (but that doesn't work directly in a static method).

Resources