Does prior distribution matter in classification? - machine-learning

Currently I get a classification problem with two classes. what I want to do is that given a bunch of candidates, find out who will more likely to be the class 1. The problem is that class 1 is very rare (around 1%), which I guess makes my prediction quite inaccurate.
For training the dataset, can I sample half class 1 and half class 0? This will change the prior distribution, but I don't know whether the prior distribution affects the classification results?

Indeed, a very imbalanced dataset can cause problems in classification. Because by defaulting to the majority class 0, you can get your error rate already very low.
There are some workarounds that may or may not work for your particular problem, such as giving equal weight to the two classes (thus weighting instances from the rare class stronger), oversampling the rare class (i.e. learning each instance multiple times), producing slight variations of the rare objects to restore balance etc. SMOTE and so on.
You really should to grab some classification or machine learning book, and check the index for "imbalanced classification" or "unbalanced classification". If the book is any good, it will discuss this problem. (I just assume you did not know the term that they use.)

If you're forced to pick exactly one from a group, then the prior distribution over classes won't matter because it will be constant for all members of that group. If you must look at each in turn and make an independent decision as to whether they're class one or class two, the prior will potentially change the decision, depending on which method you choose to do the classification. I would suggest you get hold of as many examples of the rare class as possible, but beware that feeding a 50-50 split to a classifier as training blindly may make it implicitly fit a model that assumes this is the distribution at test time.

Sampling your two classes evenly doesn't change assumed priors unless your classification algorithm computes (and uses) priors based on the training data. You stated that your problem is "given a bunch of candidates, find out who will more likely to be the class 1". I read this to mean that you want to determine which observation is most likely to belong to class 1. To do this, you want to pick the observation $x_i$ that maximizes $p(c_1|x_i)$. Using Bayes' theorem, this becomes:
$$
p(c_1|x_i)=\frac{p(x_i|c_1)p(c_1)}{p(x_i)}
$$
You can ignore $p(c_1)$ in the equation above since it is a constant. However, computing the denominator will still involve using prior probabilities. Since your problem is really more of a target detection problem than a classification problem, an alternate approach for detecting low probability targets is to take the likelihood ratio of the two classes:
$$
\Lambda=\frac{p(x_i|c_1)}{p(x_i|c_0)}
$$
To pick which of your candidates is most likely to belong to class 1, pick the one with the highest value of $\Lambda$. If your two classes are described by multivariate Gaussian distributions, you can replace $\Lambda$ with its natural logarithm, resulting in a simpler quadratic detector. If you further assume that the target and background have the same covariance matrices, this results in a linear discriminant (http://en.wikipedia.org/wiki/Linear_discriminant_analysis).

You may want to consider Bayesian utility theory to re-weight the costs of different kinds of error to get away from the problem of the priors dominating the decision.
Let A be the 99% prior probability class, B be the 1% class.
If we just say that all errors incur the same cost (negative utility), then
it's possible that the optimal decision approach is to always declare "A". Many
classification algorithms (implicitly) assume this.
If instead, we declare that the cost of declaring "B" when, in fact, the instance
was "A" is much bigger than the cost of the opposite error, then the decision logic
becomes, in a sense, more sensitive to slighter differences in the features.
This kind of situation frequently comes up in fault detection -- faults in the monitored
system will be rare, but you want to be sure that if we see any data that points to
an error condition, action needs to be taken (even if it is just reviewing the data).

Related

Model selection for classification with random train/test sets

I'm working with an extremelly unbalanced and heterogeneous multiclass {K = 16} database for research, with a small N ~= 250. For some labels the database has a sufficient amount of examples for supervised machine learning, but for others I have almost none. I'm also not in a position to expand my database for a number of reasons.
As a first approach I divided my database into training (80%) and test (20%) sets in a stratified way. On top of that, I applied several classification algorithms that provide some results. I applied this procedure over 500 stratified train/test sets (as each stratified sampling takes individuals randomly within each stratum), hoping to select an algorithm (model) that performed acceptably.
Because of my database, depending on the specific examples that are part of the train set, the performance on the test set varies greatly. I'm dealing with runs that have as high (for my application) as 82% accuracy and runs that have as low as 40%. The median over all runs is around 67% accuracy.
When facing this situation, I'm unsure on what is the standard procedure (if there is any) when selecting the best performing model. My rationale is that the 90% model may generalize better because the specific examples selected in the training set are be richer so that the test set is better classified. However, I'm fully aware of the possibility of the test set being composed of "simpler" cases that are easier to classify or the train set comprising all hard-to-classify cases.
Is there any standard procedure to select the best performing model considering that the distribution of examples in my train/test sets cause the results to vary greatly? Am I making a conceptual mistake somewhere? Do practitioners usually select the best performing model without any further exploration?
I don't like the idea of using the mean/median accuracy, as obviously some models generalize better than others, but I'm by no means an expert in the field.
Confusion matrix of the predicted label on the test set of one of the best cases:
Confusion matrix of the predicted label on the test set of one of the worst cases:
They both use the same algorithm and parameters.
Good Accuracy =/= Good Model
I want to firstly point out that a good accuracy on your test set need not equal a good model in general! This has (in your case) mainly to do with your extremely skewed distribution of samples.
Especially when doing a stratified split, and having one class dominatingly represented, you will likely get good results by simply predicting this one class over and over again.
A good way to see if this is happening is to look at a confusion matrix (better picture here) of your predictions.
If there is one class that seems to confuse other classes as well, that is an indicator for a bad model. I would argue that in your case it would be generally very hard to find a good model unless you do actively try to balance your classes more during training.
Use the power of Ensembles
Another idea is indeed to use ensembling over multiple models (in your case resulting from different splits), since it is assumed to generalize better.
Even if you might sacrifice a lot of accuracy on paper, I would bet that a confusion matrix of an ensemble is likely to look much better than the one of a single "high accuracy" model. Especially if you disregard the models that perform extremely poor (make sure that, again, the "poor" performance comes from an actual bad performance, and not just an unlucky split), I can see a very good generalization.
Try k-fold Cross-Validation
Another common technique is k-fold cross-validation. Instead of performing your evaluation on a single 80/20 split, you essentially divide your data in k equally large sets, and then always train on k-1 sets, while evaluating on the other set. You then not only get a feeling whether your split was reasonable (you usually get all the results for different splits in k-fold CV implementations, like the one from sklearn), but you also get an overall score that tells you the average of all folds.
Note that 5-fold CV would equal a split into 5 20% sets, so essentially what you are doing now, plus the "shuffling part".
CV is also a good way to deal with little training data, in settings where you have imbalanced classes, or where you generally want to make sure your model actually performs well.

Destribution of classes in training set

When making a predictive model (specificly in telecommunication regarding churn), is it essential to have a 1:1 split between the classes in the training set(the actual distribution is more like 1:50)? When reading on what other people have done this seems to be the case. But they dont neccesarily state it as a requirement. What is recommended?
Your problem is frequently referred to as "Class Imbalance". Whether and how it will impact your result depends on the algorithm and the evaluation metric you use. The logistic regression algorithm, and the model accuracy, for example, can be very susceptible to this problem. Simple envelope models, and the model AUC, on the other hand, are more resilient against class imbalance. I am aware of five broad possible approaches to deal with this:
1) Up-sampling: Basically artificially increase the number of the rare class. This may be the go-to solution when you have very little data but you are confident that it is quite representative of the wider population.
2) Down-sampling: Just leave out a part of the abundant class. This is an option when you have a very large quantity of data.
3) Weighting: Telling your algorithm to give more importance to the information obtained from the rare class.
4) Bagging: Here, you are randomly sub-sampling your data and fitting "weak" learners to each subsample. Later, these weak learners are aggregated to create one final prediction.
5) Boosting: Similar to bagging, but each "weak" learner is not agnostic to the previously fitted one. Instead, they take the residuals from the latest ensemble.
There is a really nice article here that goes through these in great detail, including some worked examples in R, and another one here which focuses more on python

Predictive features with high presence in one class

I am doing a logistic regression to predict the outcome of a binary variable, say whether a journal paper gets accepted or not. The dependent variable or predictors are all the phrases used in these papers - (unigrams, bigrams, trigrams). One of these phrases has a skewed presence in the 'accepted' class. Including this phrase gives me a classifier with a very high accuracy (more than 90%), while removing this phrase results in accuracy dropping to about 70%.
My more general (naive) machine learning question is:
Is it advisable to remove such skewed features when doing classification?
Is there a method to check skewed presence for every feature and then decide whether to keep it in the model or not?
If I understand correctly you ask whether some feature should be removed because it is a good predictor (it makes your classifier works better). So the answer is short and simple - do not remove it in fact, the whole concept is to find exactly such features.
The only reason to remove such feature would be that this phenomena only occurs in the training set, and not in real data. But in such case you have wrong data - which does not represnt the underlying data density and you should gather better data or "clean" the current one so it has analogous characteristics as the "real ones".
Based on your comments, it sounds like the feature in your documents that's highly predictive of the class is a near-tautology: "paper accepted on" correlates with accepted papers because at least some of the papers in your database were scraped from already-accepted papers and have been annotated by the authors as such.
To me, this sounds like a useless feature for trying to predict whether a paper will be accepted, because (I'd imagine) you're trying to predict paper acceptance before the actual acceptance has been issued ! In such a case, none of the papers you'd like to test your algorithm with will be annotated with "paper accepted on." So, I'd remove it.
You also asked about how to determine whether a feature correlates strongly with one class. There are three things that come to mind for this problem.
First, you could just compute a basic frequency count for each feature in your dataset and compare those values across classes. This is probably not super informative, but it's easy.
Second, since you're using a log-linear model, you can train your model on your training dataset, and then rank each feature in your model by its weight in the logistic regression parameter vector. Features with high positive weight are indicative of one class, while features with large negative weight are strongly indicative of the other.
Finally, just for the sake of completeness, I'll point out that you might also want to look into feature selection. There are many ways of selecting relevant features for a machine learning algorithm, but I think one of the most intuitive from your perspective might be greedy feature elimination. In such an approach, you train a classifier using all N features in your model, and measure the accuracy on some held-out validation set. Then, train N new models, each with N-1 features, such that each model eliminates one of the N features, and measure the resulting drop in accuracy. The feature with the biggest drop was probably strongly predictive of the class, while features that have no measurable difference can probably be omitted from your final model. As larsmans points out correctly in the comments below, this doesn't scale well at all, but it can be a useful method sometimes.

Document Classification using Naive Bayes classifier

I am making a document classifier in mahout using the simple naive bayes algorithm. Currently, 98% of the data(documents) I have is of Class A and only 2% is of class B. My question is, since there is such a wide gap in the percentage of Class A docs vs Class B docs, would the classifier be able to train accurately still?
What I'm thinking of doing is ignoring a whole bunch of Class A documents and "manipulating" the dataset I have so that there isn't such a wide gap in the composition of the documents. Thus, the dataset I'll end up having will consist 30% of Class B and 70% of Class A. But, are there any repercussions of doing that I am not aware of?
A lot of this gets into how good "accuracy" is as a measure of performance, and that depends on your problem. If misclassifying "A" as "B" is just as bad/ok as misclassifying "B" as "A", then there is little reason to do anything other than just mark everything as "A", since you know it will reliably get you a 98% accuracy (so long as that unbalanced distribution is representative of the true distribution).
Without knowing your problem (and if accuracy is the measure you should use), the best answer I could give is "it depends on the data set". It is possible that you could get past 99% accuracy with standard naive bays, though it may be unlikely. For Naive Bayes in particular, one thing you could do is to disable the use of priors (the prior is essentially the proportion of each class). This has the effect of pretending that every class is equally likely to occur, though the model parameters will have been learned from uneven amounts of data.
Your proposed solution is a common practice, it sometimes works well. Another practice is to create fake data for the smaller class (how would depend on your data, for text documents I'm not aware of any particularly good way). Another practice is to increase the weights of the data points in the under-represented classes.
You can search for "imbalanced classification" and find a lot more information about these types of problems (they are one of the harder ones).
If accuracy is not actually a good measure for your problem, you can search for more information about "cost sensitive classification" which should be helpful.
You should not necessarily sample dataset A to reduce its instances. Several methods are available for efficient learning from imbalanced datasets, such as Majority Undersampling (exactly what you did), Minority Oversampling, SMOTE, and etc. Here is an empirical comparison of these methods: http://machinelearning.org/proceedings/icml2007/papers/62.pdf
Alternatively, you may define a custom cost matrix for the classifier. In other words, assuming B=Positive class, you may define cost(False Positive) < cost(False Negative). In this case, the classifier's output will bias towards the positive class. Here is a very helpful tutorial: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.4418&rep=rep1&type=pdf

A few implementation details for a Support-Vector Machine (SVM)

In a particular application I was in need of machine learning (I know the things I studied in my undergraduate course). I used Support Vector Machines and got the problem solved. Its working fine.
Now I need to improve the system. Problems here are
I get additional training examples every week. Right now the system starts training freshly with updated examples (old examples + new examples). I want to make it incremental learning. Using previous knowledge (instead of previous examples) with new examples to get new model (knowledge)
Right my training examples has 3 classes. So, every training example is fitted into one of these 3 classes. I want functionality of "Unknown" class. Anything that doesn't fit these 3 classes must be marked as "unknown". But I can't treat "Unknown" as a new class and provide examples for this too.
Assuming, the "unknown" class is implemented. When class is "unknown" the user of the application inputs the what he thinks the class might be. Now, I need to incorporate the user input into the learning. I've no idea about how to do this too. Would it make any difference if the user inputs a new class (i.e.. a class that is not already in the training set)?
Do I need to choose a new algorithm or Support Vector Machines can do this?
PS: I'm using libsvm implementation for SVM.
I just wrote my Answer using the same organization as your Question (1., 2., 3).
Can SVMs do this--i.e., incremental learning? Multi-Layer Perceptrons of course can--because the subsequent training instances don't affect the basic network architecture, they'll just cause adjustment in the values of the weight matrices. But SVMs? It seems to me that (in theory) one additional training instance could change the selection of the support vectors. But again, i don't know.
I think you can solve this problem quite easily by configuring LIBSVM in one-against-many--i.e., as a one-class classifier. SVMs are one-class classifiers; application of an SVM for multi-class means that it has been coded to perform multiple, step-wise one-against-many classifications, but again the algorithm is trained (and tested) one class at a time. If you do this, then what's left after step-wise execution against the test set, is "unknown"--in other words, whatever data is not classified after performing multiple, sequential one-class classifications, is by definition in that 'unknown' class.
Why not make the user's guess a feature (i.e., just another dependent variable)? The only other option is to make it the class label itself, and you don't want that. So you would, for instance, add a column to your data matrix "user class guess", and just populate it with some value most likely to have no effect for those data points not in the 'unknown' category and therefore for which the user will not offer a guess--this value could be '0' or '1', but really it depends on how you have your data scaled and normalized).
Your first item will likely be the most difficult, since there are essentially no good incremental SVM implementations in existence.
A few months ago, I also researched online or incremental SVM algorithms. Unfortunately, the current state of implementations is quite sparse. All I found was a Matlab example, OnlineSVR (a thesis project only implementing regression support), and SVMHeavy (only binary class support).
I haven't used any of them personally. They all appear to be at the "research toy" stage. I couldn't even get SVMHeavy to compile.
For now, you can probably get away with doing periodic batch training to incorporate updates. I also use LibSVM, and it's quite fast, so it sould be a good substitute until a proper incremental version is implemented.
I also don't think SVM's can model the concept of an "unknown" sample by default. They typically work as a series of boolean classifiers, so a sample ends up as positively being classified as something, even if that sample is drastically different from anything seen previously. A possible workaround would be to model the ranges of your features, and randomly generate samples that exist outside of these ranges, and then add these to your training set.
For example, if you have an attribute called "color", which has a minimum value of 4 and a maximum value of 123, then you could add these to your training set
[({'color':3},'unknown'),({'color':125},'unknown')]
to give your SVM an idea of what an "unknown" color means.
There are algorithms to train an SVM incrementally, but I don't think libSVM implements this. I think you should consider whether you really need this feature. I see no problem with your current approach, unless the training process is really too slow. If it is, could you retrain in batches (i.e. after every 100 new examples)?
You can get libSVM to produce probabilities of class membership. I think this can be done for multiclass classification, but I'm not entirely sure about that. You will need to decide some threshold at which the classification is not certain enough and then output 'Unknown'. I suppose something like setting a threshold on the difference between the most likely and second most likely class would achieve this.
I think libSVM scales to any number of new classes. The accuracy of your model may well suffer by adding new classes, however.
Even though this question is probably out of date, I feel obliged to give some additional thoughts.
Since your first question has been answered by others (there is no production-ready SVM which implements incremental learning, even though it is possible), I will skip it. ;)
Adding 'Unknown' as a class is not a good idea. Depending on it's use, the reasons are different.
If you are using the 'Unknown' class as a tag for "this instance has not been classified, but belongs to one of the known classes", then your SVM is in deep trouble. The reason is, that libsvm builds several binary classifiers and combines them. So if you have three classes - let's say A, B and C - the SVM builds the first binary classifier by splitting the training examples into "classified as A" and "any other class". The latter will obviously contain all examples from the 'Unknown' class. When trying to build a hyperplane, examples in 'Unknown' (which really belong to the class 'A') will probably cause the SVM to build a hyperplane with a very small margin and will poorly recognizes future instances of A, i.e. it's generalization performance will diminish. That's due to the fact, that the SVM will try to build a hyperplane which separates most instances of A (those officially labeled as 'A') onto one side of the hyperplane and some instances (those officially labeled as 'Unknown') on the other side .
Another problem occurs if you are using the 'Unknown' class to store all examples, whose class is not yet known to the SVM. For example, the SVM knows the classes A, B and C, but you recently got example data for two new classes D and E. Since these examples are not classified and the new classes not known to the SVM, you may want to temporarily store them in 'Unknown'. In that case the 'Unknown' class may cause trouble, since it possibly contains examples with enormous variation in the values of it's features. That will make it very hard to create good separating hyperplanes and therefore the resulting classifier will poorly recognize new instances of D or E as 'Unknown'. Probably the classification of new instances belonging to A, B or C will be hindered as well.
To sum up: Introducing an 'Unknown' class which contains examples of known classes or examples of several new classes will result in a poor classifier. I think it's best to ignore all unclassified instances when training the classifier.
I would recommend, that you solve this issue outside the classification algorithm. I was asked for this feature myself and implemented a single webpage, which shows an image of the object in question and a button for each known class. If the object in question belongs to a class which is not known yet, the user can fill out another form to add a new class. If he goes back to the classification page, another button for that class will magically appear. After the instances have been classified, they can be used for training the classifier. (I used a database to store the known classes and reference which example belongs to which class. I implemented an export function to make the data SVM-ready.)

Resources