I'm trying to take a bezier curve (any arbitrary curve in Core Graphics) and shrink (or expand) it proportionally given another two end points. I have an approach that sort of works, but it ends up 'flattening' out the curves, and not retaining the shape exactly. Maybe I've messed up the code or logic, but I have the two original points along with the control point(s). Given another set of end points I want to calculate the appropriate control points to produce the same shape between the new end points.
Here's the main code that will calculate 1 control point:
CGPoint (^ScaledCtrlPoint)(CGPoint, CGPoint, CGPoint, CGPoint, CGPoint) = ^CGPoint (CGPoint refPoint1, CGPoint refPoint2, CGPoint bevPoint1, CGPoint bevPoint2, CGPoint ctrlPoint){
//Normalize points to refPoint1
refPoint2.x -= refPoint1.x; refPoint2.y -= refPoint1.y;
ctrlPoint.x -= refPoint1.x; ctrlPoint.y -= refPoint1.y;
//Normalize bevPoints to bevPoint1
bevPoint2.x -= bevPoint1.x; bevPoint2.y -= bevPoint1.y;
//Calculate control point angle
CGFloat theta = PointTheta(refPoint2);
CGFloat refHyp = (refPoint2.y != 0.0f) ? refPoint2.y / sinf(theta) : refPoint2.x / cosf(theta);
theta = PointTheta(bevPoint2);
CGFloat bevHyp = (bevPoint2.y != 0.0f) ? bevPoint2.y / sinf(theta) : bevPoint2.x / cosf(theta);
theta = PointTheta(ctrlPoint);
CGFloat ctrlHyp = (ctrlPoint.y != 0.0f) ? ctrlPoint.y / sinf(theta) : ctrlPoint.x / cosf(theta);
ctrlHyp *= (bevHyp / refHyp);
return CGPointMake(bevPoint1.x + cosf(theta) * ctrlHyp, bevPoint1.y + sinf(theta) * ctrlHyp);
};
The bevPoints are the new points I'm using to calculate the new control point. The refPoints and ctrlPoint are the original points of the bezier curve. As you can see, I'm trying to scale the ctrlPoint down (could also work up) by the same ratio as the the original end points are to the new end points.
I also use another function, which I use to calculate incident angles. It's pretty simple:
CGFloat PointTheta(CGPoint point){
//This assumes an origin of {0, 0} and returns a theta for the given point
CGFloat theta = atanf(point.y / point.x);
//Using arc tan requires some adjustment depending on the point quadrant
if (point.x == 0.0f) theta = (point.y >= 0.0f) ? M_PI_2 : M_PI + M_PI_2;
else if (point.x < 0.0f) theta += M_PI;
else if (point.x > 0.0f && point.y < 0.0f) theta += (M_PI * 2);
return theta;
}
I would compute the CGAffineTransform with parameters
(a, b, -b, a, tx, ty)
(i.e. a transform without skewing) that maps the old endpoints to the new endpoints, and then apply this transform to the old control point to get the new control point.
The condition that the 2 old endpoints are mapped to the 2 new endpoints gives 4 equations for a, b, tx, ty, and these equations can even be solved without trigonometric functions.
Related
I have an app with a color wheel and I'm trying to pick a random color within the color wheel. However, I'm having problems verifying that the random point falls within the color wheel.
Here's the code as it currently is:
CGPoint randomPoint = CGPointMake(arc4random() % (int)colorWheel.bounds.size.width, arc4random() % (int)colorWheel.bounds.size.height);
UIColor *randomColor = [self colorOfPoint:randomPoint];
CGPoint pointInView = [colorWheel convertPoint:randomPoint fromView:colorWheel.window];
if (CGRectContainsPoint(colorWheel.bounds, pointInView)) {
NSLog(#"%#", randomColor);
}
else {
NSLog(#"out of bounds");
}
A couple of other methods of verifying the point that I've tried with no luck:
if (CGRectContainsPoint(colorWheel.frame, randomPoint)) {
NSLog(#"%#", randomColor);
}
if ([colorWheel pointInside:[self.view convertPoint:randomPoint toView: colorWheel] withEvent: nil]) {
NSLog(#"%#", randomColor);
}
Sometimes it'll output "out of bounds", and sometimes it'll just output that the color is white (the background around the color wheel is currently white but there's no white in the color wheel image).
The color wheel image is a circle, so I'm not sure if that's throwing off the test, although it seems like white pops up way too frequently for it to just be a transparent square outline around the image giving a white color.
If you want to generate a random point in a circle, you would do better to pick your point in polar coordinates and then convert it to Cartesian.
The polar coordinate space uses two dimesions, radius and angle. Radius is just the distance from the center, and angle usually starts at "due east" for 0, and goes around counter-clockwise up to 2π (that's in radians, 360˚ of course in degrees).
Presumably your wheel is divided into simple wedges, so the radius actually doesn't matter; you just need to pick a random angle.
uint32_t angle = arc4random_uniform(360);
// Radius will just be halfway from the center to the edge.
// This assumes the circle is exactly enclosed, i.e., diameter == width
CGFloat radius = colorWheel.bounds.size.width / 4;
This function will give you a Cartesian point from your polar coordinates. Wikipedia explains the simple math if you're interested.
/** Convert the polar point (radius, theta) to a Cartesian (x,y). */
CGPoint poltocar(CGFloat radius, CGFloat theta)
{
return (CGPoint){radius * cos(theta), radius * sin(theta)};
}
The function uses radians for theta, because sin() and cos() do, so change the angle to radians, and then you can convert:
CGFloat theta = (angle * M_PI) / 180.0
CGPoint randomPoint = poltocar(radius, theta);
One last step: this circle has its origin at the same place as the view, that is, in the corner, so you need to translate the point to use the center as the origin.
CGPoint addPoints(CGPoint lhs, CGPoint rhs)
{
return (CGPoint){lhs.x + rhs.x, lhs.y, rhs.y};
}
CGPoint offset = (CGPoint){colorWheel.bounds.size.width / 2,
colorWheel.bounds.size.height / 2};
randomPoint = addPoints(randomPoint, offset);
And your new randomPoint will always be within the circle.
I agree with #JoshCaswell's approach, but FYI, the reason the OP code is not working is that the test for inside a circle is incorrect.
The coordinate conversion is unnecessary, and the test against a rectangle is sure to be wrong. Instead, work out how far the random point is from the center and compare that with the radius.
CGFloat centerX = colorWheel.bounds.size.width / 2.0;
CGFloat centerY = colorWheel.bounds.size.height / 2.0;
CGFloat distanceX = centerX - randomPoint.x;
CGFloat distanceY = centerY - randomPoint.y;
CGFloat distance = distanceX*distanceX + distanceY*distanceY;
CGFloat radius = colorWheel.bounds.size.width / 2.0; // just a guess
CGFloat r2 = radius*radius;
// this compares the square of the distance with r^2, to save a sqrt operation
BOOL isInCircle = distance < r2;
In my application, a user taps 3 times and an angle will be created by the 3 points that were tapped. It draws the angle perfectly. I am trying to calculate the angle at the second tap, but I think I am doing it wrong (probably a math error). I haven't covered this in my calculus class yet, so I am going off of a formula on wikipedia.
http://en.wikipedia.org/wiki/Law_of_cosines
Here is what I am trying:
Note: First, Second, and Third are CGPoints created at the user's tap.
CGFloat xDistA = (second.x - third.x);
CGFloat yDistA = (second.y - third.y);
CGFloat a = sqrt((xDistA * xDistA) + (yDistA * yDistA));
CGFloat xDistB = (first.x - third.x);
CGFloat yDistB = (first.y - third.y);
CGFloat b = sqrt((xDistB * xDistB) + (yDistB * yDistB));
CGFloat xDistC = (second.x - first.x);
CGFloat yDistC = (second.y - first.y);
CGFloat c = sqrt((xDistC * xDistC) + (yDistC * yDistC));
CGFloat angle = acos(((a*a)+(b*b)-(c*c))/((2*(a)*(b))));
NSLog(#"FULL ANGLE IS: %f, ANGLE IS: %.2f",angle, angle);
Sometimes, it gives the angle as 1 which doesn't make sense to me. Can anyone explain why this is, or how to fix it please?
Not sure if this is the main problem but it is a problem
Your answer gives the angle at the wrong point:
To get the angle in green (which is probably angle you want based on your variable names "first", "second" and "third), use:
CGFloat angle = acos(((a*a)+(c*c)-(b*b))/((2*(a)*(c))));
Here's a way that circumvents the law of cosines and instead calculates the angles of the two vectors. The difference between the angles is the searched value:
CGVector vec1 = { first.x - second.x, first.y - second.y };
CGVector vec2 = { third.x - second.x, third.y - second.y };
CGFloat theta1 = atan2f(vec1.dy, vec1.dx);
CGFloat theta2 = atan2f(vec2.dy, vec2.dx);
CGFloat angle = theta1 - theta2;
NSLog(#"angle: %.1f°, ", angle / M_PI * 180);
Note the atan2 function that takes the x and y components as separate arguments and thus avoids the 0/90/180/270° ambiguity.
The cosine formula implementation looks right; did you take into account that acos() returns the angle in radians, not in degrees? In order to convert into degrees, multiply the angle by 180 and divide by Pi (3.14159...).
The way I have done it is to calculate the two angles separately using atan2(y,x) then using this function.
static inline double
AngleDiff(const double Angle1, const double Angle2)
{
double diff = 0;
diff = fabs(Angle1 - Angle2);
if (diff > <Pi>) {
diff = (<2Pi>) - diff;
}
return diff;
}
The function deals in radians, but you can change <Pi> to 180 and <2Pi> to 360
Using this answer to compute angle of the vector:
CGFloat angleForVector(CGFloat dx, CGFloat dy) {
return atan2(dx, -dy) * 180.0/M_PI;
}
// Compute angle at point Corner, that is between AC and BC:
CGFloat angle = angleForVector(A.x - Corner.x, A.y - Corner.y)
- angleForVector(B.x - Corner.x, B.y - Corner.y);
NSLog(#"FULL ANGLE IS: %f, ANGLE IS: %.2f",angle, angle);
This is for an iPad application, but it is essentially a math question.
I need to draw a circular arc of varying (monotonically increasing) line width. At the beginning of the curve, it would have a starting thickness (let's say 2pts) and then the thickness would smoothly increase until the end of the arc where it would be at its greatest thickness (let's say 12pts).
I figure the best way to make this is by creating a UIBezierPath and filling the shape. My first attempt was to use two circular arcs (with offset centers), and that worked fine up to 90°, but the arc will often be between 90° and 180°, so that approach won't cut it.
My current approach is to make a slight spiral (one slightly growing from the circular arc and one slightly shrinking) using bezier quad or cubic curves. The question is where do I put the control points so that the deviation from the circular arc (aka the shape "thickness") is the value I want.
Constraints:
The shape must be able to start and end at an arbitrary angle (within 180° of each other)
The "thickness" of the shape (deviation from the circle) must start and end with the given values
The "thickness" must increase monotonically (it can't get bigger and then smaller again)
It has to look smooth to the eye, there can't be any sharp bends
I am open to other solutions as well.
My approach just constructs 2 circular arcs and fills the region in between. The tricky bit is figuring out the centers and radii of these arcs. Looks quite good provided the thicknesses are not too large. (Cut and paste and decide for yourself if it meet your needs.) Could possibly be improved by use of a clipping path.
- (void)drawRect:(CGRect)rect
{
CGContextRef context = UIGraphicsGetCurrentContext();
CGMutablePathRef path = CGPathCreateMutable();
// As appropriate for iOS, the code below assumes a coordinate system with
// the x-axis pointing to the right and the y-axis pointing down (flipped from the standard Cartesian convention).
// Therefore, 0 degrees = East, 90 degrees = South, 180 degrees = West,
// -90 degrees = 270 degrees = North (once again, flipped from the standard Cartesian convention).
CGFloat startingAngle = 90.0; // South
CGFloat endingAngle = -45.0; // North-East
BOOL weGoFromTheStartingAngleToTheEndingAngleInACounterClockwiseDirection = YES; // change this to NO if necessary
CGFloat startingThickness = 2.0;
CGFloat endingThickness = 12.0;
CGPoint center = CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
CGFloat meanRadius = 0.9 * fminf(self.bounds.size.width / 2.0, self.bounds.size.height / 2.0);
// the parameters above should be supplied by the user
// the parameters below are derived from the parameters supplied above
CGFloat deltaAngle = fabsf(endingAngle - startingAngle);
// projectedEndingThickness is the ending thickness we would have if the two arcs
// subtended an angle of 180 degrees at their respective centers instead of deltaAngle
CGFloat projectedEndingThickness = startingThickness + (endingThickness - startingThickness) * (180.0 / deltaAngle);
CGFloat centerOffset = (projectedEndingThickness - startingThickness) / 4.0;
CGPoint centerForInnerArc = CGPointMake(center.x + centerOffset * cos(startingAngle * M_PI / 180.0),
center.y + centerOffset * sin(startingAngle * M_PI / 180.0));
CGPoint centerForOuterArc = CGPointMake(center.x - centerOffset * cos(startingAngle * M_PI / 180.0),
center.y - centerOffset * sin(startingAngle * M_PI / 180.0));
CGFloat radiusForInnerArc = meanRadius - (startingThickness + projectedEndingThickness) / 4.0;
CGFloat radiusForOuterArc = meanRadius + (startingThickness + projectedEndingThickness) / 4.0;
CGPathAddArc(path,
NULL,
centerForInnerArc.x,
centerForInnerArc.y,
radiusForInnerArc,
endingAngle * (M_PI / 180.0),
startingAngle * (M_PI / 180.0),
!weGoFromTheStartingAngleToTheEndingAngleInACounterClockwiseDirection
);
CGPathAddArc(path,
NULL,
centerForOuterArc.x,
centerForOuterArc.y,
radiusForOuterArc,
startingAngle * (M_PI / 180.0),
endingAngle * (M_PI / 180.0),
weGoFromTheStartingAngleToTheEndingAngleInACounterClockwiseDirection
);
CGContextAddPath(context, path);
CGContextSetFillColorWithColor(context, [UIColor redColor].CGColor);
CGContextFillPath(context);
CGPathRelease(path);
}
One solution could be to generate a polyline manually. This is simple but it has the disadvantage that you'd have to scale up the amount of points you generate if the control is displayed at high resolution. I don't know enough about iOS to give you iOS/ObjC sample code, but here's some python-ish pseudocode:
# lower: the starting angle
# upper: the ending angle
# radius: the radius of the circle
# we'll fill these with polar coordinates and transform later
innerSidePoints = []
outerSidePoints = []
widthStep = maxWidth / (upper - lower)
width = 0
# could use a finer step if needed
for angle in range(lower, upper):
innerSidePoints.append(angle, radius - (width / 2))
outerSidePoints.append(angle, radius + (width / 2))
width += widthStep
# now we have to flip one of the arrays and join them to make
# a continuous path. We could have built one of the arrays backwards
# from the beginning to avoid this.
outerSidePoints.reverse()
allPoints = innerSidePoints + outerSidePoints # array concatenation
xyPoints = polarToRectangular(allPoints) # if needed
A view with a spiral .. 2023
It's very easy to draw a spiral mathematically and there are plenty of examples around.
https://github.com/mabdulsubhan/UIBezierPath-Spiral/blob/master/UIBezierPath%2BSpiral.swift
Put it in a view in the obvious way:
class Example: UIView {
private lazy var spiral: CAShapeLayer = {
let s = CAShapeLayer()
s.strokeColor = UIColor.systemPurple.cgColor
s.fillColor = UIColor.clear.cgColor
s.lineWidth = 12.0
s.lineCap = .round
layer.addSublayer(s)
return s
}()
private lazy var sp: CGPath = {
let s = UIBezierPath.getSpiralPath(
center: bounds.centerOfCGRect(),
startRadius: 0,
spacePerLoop: 4,
startTheta: 0,
endTheta: CGFloat.pi * 2 * 5,
thetaStep: 10.radians)
return s.cgPath
}()
override func layoutSubviews() {
super.layoutSubviews()
clipsToBounds = true
spiral.path = sp
}
}
I'm struggling with rotating a triangle resulting from a UIRotationGestureRecognizer. If you could look over my approach and offer suggestions, I'd greatly appreciate it.
I ask the gesture recognizer object for the rotation, which the documentation says is returned in radians.
My strategy had been to think of each vertex as a point on a circle that exists between the center of the triangle and the vertex, and then use the radians of rotation to find the new point on that circumference. I'm not totally sure this is a valid approach, but I wanted to at least try it. Visually I'd know whether or not it was working.
Here's the code I created in that attempt:
- (CGPoint)rotateVertex:(CGPoint)vertex byRadians:(float)radians
{
float deltaX = center.x - vertex.x;
float deltaY = center.y - vertex.y;
float currentAngle = atanf( deltaX / deltaY );
float newAngle = currentAngle + radians;
float newX = cosf(newAngle) + vertex.x;
float newY = sinf(newAngle) + vertex.y;
return CGPointMake(newX, newY);
}
When executed, there's a slight rotation at the beginning, but then as I continue rotating my fingers the vertices just start getting farther away from the center point, indicating I'm confusing something here.
I looked at what the CGContextRotateCTM could do for me, but ultimately I need to know what the vertices are after the rotation, so just rotating the graphics context doesn't appear to leave me with those changed coordinates.
I also tried the technique described here but that resulted in the triangle being flipped about the second vertex, which seems odd, but then that technique works with p and q being the x and y coordinates of the second vertex.
Thanks for taking a look!
Solved: Here is the corrected function. It assumes you have calculated the center of the triangle. I used the 1/3(x1 + x2 + x3), 1/3(y1 + y2 + y3) method described on the Wikipedia article on Centroids.
- (CGPoint)rotatePoint:(CGPoint)currentPoint byRadians:(float)radiansOfRotation
{
float deltaX = currentPoint.x - center.x;
float deltaY = currentPoint.y - center.y;
float radius = sqrtf(powf(deltaX, 2.0) + powf(deltaY, 2.0));
float currentAngle = atan2f( deltaY, deltaX );
float newAngle = currentAngle + radiansOfRotation;
float newRun = radius * cosf(newAngle);
float newX = center.x + newRun;
float newRise = radius * sinf(newAngle);
float newY = center.y + newRise;
return CGPointMake(newX, newY);
}
Of noteworthy relevance to why the first code listing did not work was that the arguments to atan2 were reversed. Also, the correct calculation of the delta values was reversed.
You're forgetting to multiply by the radius of the circle. Also, since the Y axis points down in the UIKit coordinate system, you have to subtract instead of add the radians and negate the y coordinate at the end. And you need to use atan2 only gives output in the range -pi/2 to pi/2:
float currentAngle = atan2f(deltaY, deltaX);
float newAngle = currentAngle - radians;
float radious = sqrtf(powf(deltaX, 2.0) + powf(deltaY, 2.0));
float newX = radius * cosf(newAngle) + vertex.x;
float newY = -1.0 * radius * sinf(newAngle) + vertex.y;
The answer is embedded now in the original question. Gun shy about proper decorum ;-)
I am attempting to simply make objects orbit around a center point, e.g.
The green and blue objects represent objects which should keep their distance to the center point, while rotating, based on an angle which I pass into method.
I have attempted to create a function, in objective-c, but it doesn't work right without a static number. e.g. (It rotates around the center, but not from the true starting point or distance from the object.)
-(void) rotateGear: (UIImageView*) view heading:(int)heading
{
// int distanceX = 160 - view.frame.origin.x;
// int distanceY = 240 - view.frame.origin.y;
float x = 160 - view.image.size.width / 2 + (50 * cos(heading * (M_PI / 180)));
float y = 240 - view.image.size.height / 2 + (50 * sin(heading * (M_PI / 180)));
view.frame = CGRectMake(x, y, view.image.size.width, view.image.size.height);
}
My magic numbers 160, and 240 are the center of the canvas in which I'm drawing the images onto. 50 is a static number (and the problem), which allows the function to work partially correctly -- without maintaining the starting poisition of the object or correct distance. I don't know what to put here unfortunately.
heading is a parameter that passes in a degree, from 0 to 359. It is calculated by a timer and increments outside of this class.
Essentially what I would like to be able to drop any image onto my canvas, and based on the starting point of the image, it would rotate around the center of my circle. This means, if I were to drop an image at Point (10,10), the distance to the center of the circle would persist, using (10,10) as a starting point. The object would rotate 360 degrees around the center, and reach it's original starting point.
The expected result would be to pass for instance (10,10) into the method, based off of zero degrees, and get back out, (15,25) (not real) at 5 degrees.
I know this is very simple (and this problem description is entirely overkill), but I'm going cross eyed trying to figure out where I'm hosing things up. I don't care about what language examples you use, if any. I'll be able to decipher your meanings.
Failure Update
I've gotten farther, but I still cannot get the right calculation. My new code looks like the following:
heading is set to 1 degree.
-(void) rotateGear: (UIImageView*) view heading:(int)heading
{
float y1 = view.frame.origin.y + (view.frame.size.height/2); // 152
float x1 = view.frame.origin.x + (view.frame.size.width/2); // 140.5
float radius = sqrtf(powf(160 - x1 ,2.0f) + powf(240 - y1, 2.0f)); // 90.13
// I know that I need to calculate 90.13 pixels from my center, at 1 degree.
float x = 160 + radius * (cos(heading * (M_PI / 180.0f))); // 250.12
float y = 240 + radius * (sin(heading * (M_PI / 180.0f))); // 241.57
// The numbers are very skewed.
view.frame = CGRectMake(x, y, view.image.size.width, view.image.size.height);
}
I'm getting results that are no where close to where the point should be. The problem is with the assignment of x and y. Where am I going wrong?
You can find the distance of the point from the centre pretty easily:
radius = sqrt((160 - x)^2 + (240 - y)^2)
where (x, y) is the initial position of the centre of your object. Then just replace 50 by the radius.
http://en.wikipedia.org/wiki/Pythagorean_theorem
You can then figure out the initial angle using trigonometry (tan = opposite / adjacent, so draw a right-angled triangle using the centre mass and the centre of your orbiting object to visualize this):
angle = arctan((y - 240) / (x - 160))
if x > 160, or:
angle = arctan((y - 240) / (x - 160)) + 180
if x < 160
http://en.wikipedia.org/wiki/Inverse_trigonometric_functions
Edit: bear in mind I don't actually know any Objective-C but this is basically what I think you should do (you should be able to translate this to correct Obj-C pretty easily, this is just for demonstration):
// Your object gets created here somewhere
float x1 = view.frame.origin.x + (view.frame.size.width/2); // 140.5
float y1 = view.frame.origin.y + (view.frame.size.height/2); // 152
float radius = sqrtf(powf(160 - x1 ,2.0f) + powf(240 - y1, 2.0f)); // 90.13
// Calculate the initial angle here, as per the first part of my answer
float initialAngle = atan((y1 - 240) / (x1 - 160)) * 180.0f / M_PI;
if(x1 < 160)
initialAngle += 180;
// Calculate the adjustment we need to add to heading
int adjustment = (int)(initialAngle - heading);
So we only execute the code above once (when the object gets created). We need to remember radius and adjustment for later. Then we alter rotateGear to take an angle and a radius as inputs instead of heading (this is much more flexible anyway):
-(void) rotateGear: (UIImageView*) view radius:(float)radius angle:(int)angle
{
float x = 160 + radius * (cos(angle * (M_PI / 180.0f)));
float y = 240 + radius * (sin(angle * (M_PI / 180.0f)));
// The numbers are very skewed.
view.frame = CGRectMake(x, y, view.image.size.width, view.image.size.height);
}
And each time we want to update the position we make a call like this:
[objectName rotateGear radius:radius angle:(adjustment + heading)];
Btw, once you manage to get this working, I'd strongly recommend converting all your angles so you're using radians all the way through, it makes it much neater/easier to follow!
The formula for x and y coordinates of a point on a circle, based on radians, radius, and center point:
x = cos(angle) * radius + center_x
y = sin(angle) * radius + center_y
You can find the radius with HappyPixel's formula.
Once you figure out the radius and the center point, you can simply vary the angle to get all the points on the circle that you'd want.
If I understand correctly, you want to do InitObject(x,y). followed by UpdateObject(angle) where angle sweeps from 0 to 360. (But use radians instead of degrees for the math)
So you need to track the angle and radius for each object.:
InitObject(x,y)
relative_x = x-center.x
relative_y = y-center.y
object.radius = sqrt((relative_x)^2, (relative_y)^2)
object.initial_angle = atan(relative_y,relative_x);
And
UpdateObject(angle)
newangle = (object.initial_angle + angle) % (2*PI )
object.x = cos(newangle) * object.radius + center.x
object.y = sin(newangle) * object.radius + center.y
dx=dropx-centerx; //target-source
dy=-(dropy-centery); //minus = invert screen coords to cartesian coords
radius=sqrt(dy*dy+dx*dx); //faster if your compiler optimizer is bad
if dx=0 then dx=0.000001; //hackpatchfudgenudge*
angle=atan(dy/dx); //set this as start angle for the angle-incrementer
Then go with the code you have and you'll be fine. You seem to be calculating radius from current position each time though? This, like the angle, should only be done once, when the object is dropped, or else the radius might not be constant.
*instead of handling 3 special cases for dx=0, if you need < 1/100 degree precision for the start angle go with those instead, google Polar Arctan.