How do I decompose a complex Shape into simple shapes from binary images with OpenCV? I would post an image...but it is not allowed for new users. My example is a box overlaid on another box and both boxes are the same exact color(1 color)....I want to break this into two boxes....what is the best way to do this?
I would suggest using Hough transform for your specific concern as it is powerful to detect overlapping parametric forms.
Beware, wikipedia may not be the best source to introduce Hough transform !
Originally Hough transform was used to detect lines inside images but the generalisation of the concept is easy to implement.
Related
I'm trying to detect shapes written on a whiteboard with a black/blue/red/green marker. The shapes can be circles, rectangles or triangles. The image can be found at the bottom of this post.
I'm using OpenCV as the framework for the image recognition.
My first task is to research and list the different strategies that could be used for the detection. So far I have found the following:
1) Grayscale, Blur, Canny Edge, Contour detection, and then some logic to determine if the contours detected are shapes?
2) Haar training with different features for shapes
3) SVM classification
4) Grayscale, Blur, Canny Edge, Hough transformation and some sort of color segmentation?
Are there any other strategies that I have missed? Any newer articles or tested approaches? How would you do it?
One of the test pictures: https://drive.google.com/file/d/0B6Fm7aj1SzBlZWJFZm04czlmWWc/view?usp=sharing
UPDATE:
The first strategy seems to work the best, but is far from perfect. Issues arise when boxes are not closed, or when the whiteboard has a lot of noise. Haar training does not seems very effective because of the simple shapes to detect without many specific features. I have not tried CNN yet, but it seems most appropriate to image classification, and not so much to detect shapes in a larger image (but I'm not sure)
I think that the first option should work. You can use fourier descriptors in order to classify the segmented shapes.
http://www.isy.liu.se/cvl/edu/TSBB08/lectures/DBgrkX1.pdf
Also, maybe you can find something useful here:
http://www.pyimagesearch.com/2016/02/08/opencv-shape-detection/
If you want to try a more challenging but modern approach, consider deep learning approach (I would start with CNN). There are many implementations available on the internet. Although it is probably an overkill for this specific project, it might help you in the future...
Have OpenCV implementation of shape context matching? I've found only matchShapes() function which do not work for me. I want to get from shape context matching set of corresponding features. Is it good idea to compare and find rotation and displacement of detected contour on two different images.
Also some example code will be very helpfull for me.
I want to detect for example pink square, and in the second case pen. Other examples could be squares with some holes, stars etc.
The basic steps of Image Processing is
Image Acquisition > Preprocessing > Segmentation > Representation > Recognition
And what you are asking for seems to lie within the representation part os this general algorithm. You want some features that descripes the objects you are interested in, right? Before sharing what I've done for simple hand-gesture recognition, I would like you to consider what you actually need. A lot of times simplicity will make it a lot easier. Consider a fixed color on your objects, consider background subtraction (these two main ties to preprocessing and segmentation). As for representation, what features are you interested in? and can you exclude the need of some of these features.
My project group and I have taken a simple approach to preprocessing and segmentation, choosing a green glove for our hand. Here's and example of the glove, camera and detection on the screen:
We have used a threshold on defects, and specified it to find defects from fingers, and we have calculated the ratio of a rotated rectangular boundingbox, to see how quadratic our blod is. With only four different hand gestures chosen, we are able to distinguish these with only these two features.
The functions we have used, and the measurements are all available in the documentation on structural analysis for OpenCV, and for acces of values in vectors (which we've used a lot), can be found in the documentation for vectors in c++
I hope you can use the train of thought put into this; if you want more specific info I'll be happy to comment, Enjoy.
I am looking for an efficient way to detect the small boxes around the numbers (see images)?
I already tried to use hough transformation with no success. Any ideas? I need some hints! I am using opencv...
For inspiration, you can have a look at the
Matlab video sudoku solver demo and explanation
Sudoku Grab, an Iphone App, whose author explains the computer vision part on his blog
Alternatively, if you are always hunting for the same grid you could deploy something like this:
Make a perfect artificial template of the grid and detect or save all coordinates from all corners.
In the target image, do the same thing, for example with Harris points. Be creative, you might also be able to use the distinct triangles that can be found in your images.
Using the coordinates from the template and the found harris points, determine the affine transformation x = Ax' between the template and the target image. That transformation can then be used to map the template grid onto the target image. At the very least this will give you some prior information to help guide further segmentation.
The gist of the idea and examples of the estimation of affine matrix A can be found on the site of Zissermans book Multiple View Geometry in Computer Vision and Peter Kovesi
I'd start by trying to detect the rectangular boundary of the overall sheet, then applying a perspective transform to make it truly rectangular. Crop that portion of the image out. If possible, then try to make the alternating white and grey sub-rectangles have an equal background brightness - maybe try adaptive histogram equalization.
Then the Hough transform might perform better. Alternatively, you could then take an approach that's broadly similar to this demonstration by Robert Bemis on MATLAB Central (it's analysing a DNA microarray image rather than Lotto cards, but it's essentially finding bounding boxes of items arranged in a grid). At a high level, the approach is to calculate the autocorrelation along columns and rows of pixels to detect the periodicity of the items in the grid, and use that to impose a bounding box on each item.
Sorry the above advice is mostly MATLAB-based; I'm afraid I'm not an opencv user, but hopefully it will give you some ideas at least.
I'm just starting to learn OpenCV programming. May I just ask about how can I identify lines and curves in OpenCV? My problem is that I have to identify if the image contains a convex or concave (horizontal or vertical curve) curve, a vertical, diagonal or a horizontal line.
In my code, I used CvSetImageROI to take a particular part of an image, and then I'm trying to identify each according to the said lines/curves.
Are there functions in OpenCV that are available? Thank you very much for the help. By the way, i'm using Linux and C++.
Hough transform http://en.wikipedia.org/wiki/Hough_transform, http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
is the standard way to do it. In its simple form (as implemented in OpenCV) it can detect lines of arbitray position and angle and line segments.
Look here for an example
http://opencv.itseez.com/modules/imgproc/doc/feature_detection.html?highlight=hough#houghlinesp
For curves, the detection process is a bit more complicated, and you need the general Hough transform It is not yet available in OCV, but you can write it as an exercise or look for a good implementation.
http://en.wikipedia.org/wiki/Generalised_Hough_transform describes it (in short)
For a project I've to detect a pattern and track it in space despite rotation, noise, etc.
It's highlighted with IR light and recorded with an IR camera:
Picture: https://i.stack.imgur.com/RJuVS.png
As on this picture it will be only very simple shape and we can choose which one we're gonna use.
I need direction on how to process a recognition of these shapes please.
What I do currently is thresholding and erosion to get a cleaner shape and then a contour detection and a polygon approximation.
What should I do then? I tried hu-moments but it wasn't good at all.
Could you please give me a global approach to recognize and track such pattern in space?
Can you choose which shape to project?
if so I would recomend using few concentric circles. Then using hough transform for circles you can easily find the center of the shape even when tracking is extremly hard (large movement/low frame rate).
If you must use rectangular shape then there is a good open source which does that. It is part of a project to read street signs and auto-translate them.
Here is a link: http://code.google.com/p/signfinder/
This source is not large and it would be easy to cut out the relevant part.
It uses "good features to track" of openCV in module CornerFinder.
Hope it helped
It is possible, you need following steps: thresholding image, some morphological enhancement,
blob extraction and normalization of blob size, blobs shape analysis, comparison of analysis results with pattern that you want to track.
There is many methods for blobs shape analysis. Simple methods: geometric dimensions, area, perimeter, circularity measurement; bit quads and others (for example, William K. Pratt "Digital Image Processing", chapter 18). Complex methods: spacial moments, template matching, neural networks and others.
In any event, it is very hard to answer exactly without knowledge of pattern shapes that you want to track )
hope it helped