two images with camera position and angle to 3d data? - image-processing

Suppose I've got two images taken by the same camera. I know the 3d position of the camera and the 3d angle of the camera when each picture was taken. I want to extract some 3d data from the images on the portion of them that overlaps. It seems that OpenCV could help me solve this problem, but I can't seem to find where my camera position and angle would be used in their method stack. Help? Is there some other C library that would be more helpful? I don't even know what keywords to search for on the web. What's the technical term for overlapping image content?

You need to learn a little more about camera geometry, and stereo rig geometry. Unless your camera was mounted on a special rig, it's rather doubtful that its pose at each image can be specified with just an angle and a point. Rather, you'd need three angles (e.g. roll, pitch, yaw). Plus, if you want your reconstruction to be metrical accurate, you need to calibrate accurately the focal length of the camera (at a minimum).

Related

How to rectify my own image to the cameras of the KITTI dataset using OpenCV

Based on the documentation of stereo-rectify from OpenCV, one can rectify an image based on two camera matrices, their distortion coefficients, and a rotation-translation from one camera to another.
I would like to rectify an image I took using my own camera to the stereo setup from the KITTI dataset. From their calibration files, I know the camera matrix and size of images before rectification of all the cameras. All their data is calibrated to their camera_0.
From this PNG, I know the position of each of their cameras relative to the front wheels of the car and relative to ground.
I can also do a monocular calibration on my camera and get a camera matrix and distortion coefficients.
I am having trouble coming up with the rotation and translation matrix/vector between the coordinate systems of the first and the second cameras, i.e. from their camera to mine or vice-versa.
I positioned my camera on top of my car at almost exactly the same height and almost exactly the same distance from the center of the front wheels, as shown in the PNG.
However now I am at a loss as to how I can create the joint rotation-translation matrix. In a normal stereo-calibrate, these are returned by the setereoCalibrate function.
I looked at some references about coordinate transformation but I don't have sufficient practice in them to figure it out on my own.
Any suggestions or references are appreciated!

Calibration of stationary video camera

I have a problem in which i have a stationary video camera in a room and several videos from it, i need to transform the image coordinates into world coordinates.
What i know:
1. all the measurements of the room.
2. 16 image coordinates and their respected world coordinates.
The problem i encounter:
At first i thought i just need to create a geometric transformation (According to http://xenia.media.mit.edu/~cwren/interpolator/), but i have a problem since the edge of the room are distorted in the image, and i cant calibrate the camera because i can't get a hold of the room or the camera.
Is there anyway i can overcome those difficulties and measure the distance in the room with some accuracy?
Thanks
You can calibrate the distortion of the camera by extracting first the edges of your room and then finding the best set of distortion parameters (that will minimize edge distortion).
There are few works that implement this approach though:
you can find a skeleton of distortion estimation procedure in R. Szeliski's book, but without an implementation;
alternatively, you can find a method + implementation (+ an online demo where you can upload your images) on IPOL.
Regarding the perspective distortion, after removing the lens distortion just proceed with the link that you have found by applying this method to the image of the four corners of the room floor.
This will give you the mapping between an image pixel and a ground pixel (and thus the object world coordinate, assuning you only want the X-Y coordinates). If you need the height measurement, then you need to find an object with a known height in your images to calibrate it too.

Opencv: correcting radially distorted images when chessboard images are not available

How do I recover correct image from a radially distorted image using OpenCV? for example:
Please provide me useful links.
Edit
The biggest problem is I neither have the camera used for taking the pic nor the chessboard image.
Is that even possible?
Well, there is not much to do if you don't have the camera, or at least the model of it. As you may know a usual camera model is pin-hole, this basically consist in the 3D world coordinates are transformed (mapped) to the camera image plane 2D coordinates.
Camera Resectioning
If you don't have access to the camera or at least two chessboard images, you can't estimate the focal, principal point, and distortion coefficients. At least not in a traditional way, if you have more images than the one that you showed or a video from that camera you could try auto or self calibration.
Camera auto-calibration
Another auto-calibration
yet another
Opencv auto-calibration

OpenCV + photogrammetry

i have a stereopair,
photo 1: http://savepic.org/1671682.jpg
photo 2: http://savepic.org/1667586.jpg
there is coordinate system in each image. How can I find coordinates of point A in this system using OpenCV library. It would be nice to see sample code.
I've looked for it at opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html but haven't found (or haven't understood :) )
Your 'stereo' images are fine. What you have already done is solve the correspondence problem: in both images you have indicated points 'A'. This means that you know which pixel corresponds to eachother labeling point 'A'.
What you want to do, is triangulate where your camera is. You can only do this by first calibrating your camera. This is inside of OpenCV already.
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
This gives you the exact vector/ray of light for each vector, and the optical center of your cameras through which the ray passes. Moreover, you need stereo calibration. This establishes the orientation and position of each camera with respect through each other.
From that point on, your triangulation is simple, knowing the pixel location in both images of point 'A'. You have
Location and orientation of camera 1 and camera 2
Otical Ray Vector (pixel location) from the cameras to label 'A'.
So you have 2 locations in space, and 2 rays from these location. The intersection of these rays is your 3D answer.
Note that in practice there rays will never exactly intersect (2 lines in 3D rarely do), so you need to approximate. Use opencv function triangulatePoints(), using the input of the stereo calibration and the pixel index relating to label A.
Firstly of all this is not truly a stereo pair. A nice stereo pair needs to have 60%-80% overlap usually small rotation differences between images. Even if this pair had the necessary BASE to be a good stereo pair due to the extremely kappa rotation the resulting epipolar image would be useless.
Secondly among others you should take a look at the camera calibration and collinearity equations both supported by OpenCV
http://en.wikipedia.org/wiki/Camera_resectioning
http://en.wikipedia.org/wiki/Collinearity_equation
You need to understand the maths.
If the page isn't enough then you should look at the opencv book - it devotes a couple of chapters to this. Then there are a lot of textbooks that cover it in more detail

Camera Calibration

I am using OpenCV, a newbie to the entire thing.
I have a scenario, I am projecting on a wall, I am building a kind of a robot which has a camera. I wanted to know how can I process the image so that I could get the real-world values of the co-ordinates of the blobs tracked by my camera?
First of all, you need to calibrate the intrinsic of the camera. Use checkerboard-patterns printed on cardboard to do this, OpenCV has methods for this although there are finished tools for this as well.
To get an idea, I have written some python code to calibrate from a live video stream, move the cardboard along the camera in some different angles and distances. Take a look here: http://svn.ioctl.eu/pub/opencv/py-camera_intrinsic/
Then you need to calibrate the extrinsic of the camera, that is the position of the camera wrt. your world coordinates. You can place some markers on the wall, define the 3D-position of those markers and let OpenCV calibrate the extrinsic for this (cvFindExtrinsicCameraParams2).
In my sample code, I calculate the extrinsic wrt. the checkerboard so I can render a Teapot in the correct perspective of the camera. You have to adjust this to your needs.
I assume you project only onto a flat surface. You have to know the geometry to get the 3D coordinates of your detected blob. You can then find the blobs in your camera image and knowing intrinsic, extrinsic and the geometry, you can cast rays for each blob from the camera according to your intrinsic/extrinsic and calculate the intersection of each such ray with your known geometry. The intersection then is your 3D point in world space where the blob is projected to.

Resources