Okay I have a lot of confusion in regards to the way likelihood functions are defined in the context of different machine learning algorithms. For the context of this discussion, I will reference Andrew Ng 229 lecture notes.
Here is my understanding thus far.
In the context of classification, we have two different types of algorithms: discriminative and generative. The goal in both of these cases is to determine the posterior probability, that is p(C_k|x;w), where w is parameter vector and x is feature vector and C_k is kth class. The approaches are different as in discriminative we are trying to solve for the posterior probability directly given x. And in the generative case, we are determining the conditional distributions p(x|C_k), and prior classes p(C_k), and using Bayes theorem to determine P(C_k|x;w).
From my understanding Bayes theorem takes the form: p(parameters|data) = p(data|parameters)p(parameters)/p(data) where the likelihood function is p(data|parameters), posterior is p(parameters|data) and prior is p(parameters).
Now in the context of linear regression, we have the likelihood function:
p(y|X;w) where y is the vector of target values, X is design matrix.
This makes sense in according to how we defined the likelihood function above.
Now moving over to classification, the likelihood is defined still as p(y|X;w). Will the likelihood always be defined as such ?
The posterior probability we want is p(y_i|x;w) for each class which is very weird since this is apparently the likelihood function as well.
When reading through a text, it just seems the likelihood is always defined to different ways, which just confuses me profusely. Is there a difference in how the likelihood function should be interpreted for regression vs classification or say generative vs discriminative. I.e the way the likelihood is defined in Gaussian discriminant analysis looks very different.
If anyone can recommend resources that go over this in detail I would appreciate this.
A quick answer is that the likelihood function is a function proportional to the probability of seeing the data conditional on all the parameters in your model. As you said in linear regression it is p(y|X,w) where w is your vector of regression coefficients and X is your design matrix.
In a classification context, your likelihood would be proportional to P(y|X,w) where y is your vector of observed class labels. You do not have a y_i for each class, because your training data was observed to be in one particular class. Given your model specification and your model parameters, for each observed data point you should be able to calculate the probability of seeing the observed class. This is your likelihood.
The posterior predictive distribution, p(y_new_i|X,y), is the probability you want in paragraph 4. This is distinct from the likelihood because it is the probability for some unobserved case, rather than the likelihood, which relates to your training data. Note that I removed w because typically you would want to marginalize over it rather than condition on it because there is still uncertainty in the estimate after training your model and you would want your predictions to marginalize over that rather than condition on one particular value.
As an aside, the goal of all classification methods is not to find a posterior distribution, only Bayesian methods are really concerned with a posterior and those methods are necessarily generative. There are plenty of non-Bayesian methods and plenty of non-probabilistic discriminative models out there.
Any function proportional to p(a|b) where a is fixed is a likelihood function for b. Note that p(a|b) might be called something else, depending on what's interesting at the moment. For example, p(a|b) can also be called the posterior for a given b. The names don't really matter.
When we train a training set using decision tree classifier, we will get a tree model. And this model can be converted to rules and can be incorporated into a java code.
Now if I train the training set using Naive Bayes, in what form is the model? And how can I incorporated the model into my java code?
If there is no model resulted from the training, then what is the difference between Naive Bayes and lazy learner (ex. kNN)?
Thanks in advance.
Naive Bayes constructs estimations of conditional probabilities P(f_1,...,f_n|C_j), where f_i are features and C_j are classes, which, using bayes rule and estimation of priors (P(C_j)) and evidence (P(f_i)) can be translated into x=P(C_j|f_1,...,f_n), which can be roughly read as "Given features f_i I think, that their describe object of class C_j and my certainty is x". In fact, NB assumes that festures are independent, and so it actualy uses simple propabilities in form of x=P(f_i|C_j), so "given f_i I think that it is C_j with probability x".
So the form of the model is set of probabilities:
Conditional probabilities P(f_i|C_j) for each feature f_i and each class C_j
priors P(C_j) for each class
KNN on the other hand is something completely different. It actually is not a "learned model" in a strict sense, as you don't tune any parameters. It is rather a classification algorithm, which given training set and number k simply answers question "For given point x, what is the major class of k nearest points in the training set?".
The main difference is in the input data - Naive Bayes works on objects that are "observations", so you simply need some features which are present in classified object or absent. It does not matter if it is a color, object on the photo, word in the sentence or an abstract concept in the highly complex topological object. While KNN is a distance-based classifier which requires you to classify object which you can measure distance between. So in order to classify abstract objects you have to first come up with some metric, distance measure, which describes their similarity and the result will be highly dependent on those definitions. Naive Bayes on the other hand is a simple probabilistic model, which does not use the concept of distance at all. It treats all objects in the same way - they are there or they aren't, end of story (of course it can be generalised to the continuous variables with given density function, but it is not the point here).
The Naive Bayes will construct/estimate the probability distribution from which your training samples have been generated.
Now, given this probability distribution for all your output classes, you take a test sample, and depending on which class has the highest probability of generating this sample, you assign the test sample to that class.
In short, you take the test sample and run it through all the probability distributions (one for each class) and calculate the probability of generating this test sample for that particular distribution.
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 2 years ago.
Improve this question
When we have to predict the value of a categorical (or discrete) outcome we use logistic regression. I believe we use linear regression to also predict the value of an outcome given the input values.
Then, what is the difference between the two methodologies?
Linear regression output as probabilities
It's tempting to use the linear regression output as probabilities but it's a mistake because the output can be negative, and greater than 1 whereas probability can not. As regression might actually
produce probabilities that could be less than 0, or even bigger than
1, logistic regression was introduced.
Source: http://gerardnico.com/wiki/data_mining/simple_logistic_regression
Outcome
In linear regression, the outcome (dependent variable) is continuous.
It can have any one of an infinite number of possible values.
In logistic regression, the outcome (dependent variable) has only a limited number of possible values.
The dependent variable
Logistic regression is used when the response variable is categorical in nature. For instance, yes/no, true/false, red/green/blue,
1st/2nd/3rd/4th, etc.
Linear regression is used when your response variable is continuous. For instance, weight, height, number of hours, etc.
Equation
Linear regression gives an equation which is of the form Y = mX + C,
means equation with degree 1.
However, logistic regression gives an equation which is of the form
Y = eX + e-X
Coefficient interpretation
In linear regression, the coefficient interpretation of independent variables are quite straightforward (i.e. holding all other variables constant, with a unit increase in this variable, the dependent variable is expected to increase/decrease by xxx).
However, in logistic regression, depends on the family (binomial, Poisson,
etc.) and link (log, logit, inverse-log, etc.) you use, the interpretation is different.
Error minimization technique
Linear regression uses ordinary least squares method to minimise the
errors and arrive at a best possible fit, while logistic regression
uses maximum likelihood method to arrive at the solution.
Linear regression is usually solved by minimizing the least squares error of the model to the data, therefore large errors are penalized quadratically.
Logistic regression is just the opposite. Using the logistic loss function causes large errors to be penalized to an asymptotically constant.
Consider linear regression on categorical {0, 1} outcomes to see why this is a problem. If your model predicts the outcome is 38, when the truth is 1, you've lost nothing. Linear regression would try to reduce that 38, logistic wouldn't (as much)2.
In linear regression, the outcome (dependent variable) is continuous. It can have any one of an infinite number of possible values. In logistic regression, the outcome (dependent variable) has only a limited number of possible values.
For instance, if X contains the area in square feet of houses, and Y contains the corresponding sale price of those houses, you could use linear regression to predict selling price as a function of house size. While the possible selling price may not actually be any, there are so many possible values that a linear regression model would be chosen.
If, instead, you wanted to predict, based on size, whether a house would sell for more than $200K, you would use logistic regression. The possible outputs are either Yes, the house will sell for more than $200K, or No, the house will not.
Just to add on the previous answers.
Linear regression
Is meant to resolve the problem of predicting/estimating the output value for a given element X (say f(x)). The result of the prediction is a continuous function where the values may be positive or negative. In this case you normally have an input dataset with lots of examples and the output value for each one of them. The goal is to be able to fit a model to this data set so you are able to predict that output for new different/never seen elements. Following is the classical example of fitting a line to set of points, but in general linear regression could be used to fit more complex models (using higher polynomial degrees):
Resolving the problem
Linear regression can be solved in two different ways:
Normal equation (direct way to solve the problem)
Gradient descent (Iterative approach)
Logistic regression
Is meant to resolve classification problems where given an element you have to classify the same in N categories. Typical examples are, for example, given a mail to classify it as spam or not, or given a vehicle find to which category it belongs (car, truck, van, etc ..). That's basically the output is a finite set of discrete values.
Resolving the problem
Logistic regression problems could be resolved only by using Gradient descent. The formulation in general is very similar to linear regression the only difference is the usage of different hypothesis function. In linear regression the hypothesis has the form:
h(x) = theta_0 + theta_1*x_1 + theta_2*x_2 ..
where theta is the model we are trying to fit and [1, x_1, x_2, ..] is the input vector. In logistic regression the hypothesis function is different:
g(x) = 1 / (1 + e^-x)
This function has a nice property, basically it maps any value to the range [0,1] which is appropiate to handle propababilities during the classificatin. For example in case of a binary classification g(X) could be interpreted as the probability to belong to the positive class. In this case normally you have different classes that are separated with a decision boundary which basically a curve that decides the separation between the different classes. Following is an example of dataset separated in two classes.
You can also use the below code to generate the linear regression
curve
q_df = details_df
# q_df = pd.get_dummies(q_df)
q_df = pd.get_dummies(q_df, columns=[
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9"
])
q_1_df = q_df["1"]
q_df = q_df.drop(["2", "3", "4", "5"], axis=1)
(import statsmodels.api as sm)
x = sm.add_constant(q_df)
train_x, test_x, train_y, test_y = sklearn.model_selection.train_test_split(
x, q3_rechange_delay_df, test_size=0.2, random_state=123 )
lmod = sm.OLS(train_y, train_x).fit() lmod.summary()
lmod.predict()[:10]
lmod.get_prediction().summary_frame()[:10]
sm.qqplot(lmod.resid,line="q") plt.title("Q-Q plot of Standardized
Residuals") plt.show()
Simply put, linear regression is a regression algorithm, which outpus a possible continous and infinite value; logistic regression is considered as a binary classifier algorithm, which outputs the 'probability' of the input belonging to a label (0 or 1).
The basic difference :
Linear regression is basically a regression model which means its will give a non discreet/continuous output of a function. So this approach gives the value. For example : given x what is f(x)
For example given a training set of different factors and the price of a property after training we can provide the required factors to determine what will be the property price.
Logistic regression is basically a binary classification algorithm which means that here there will be discreet valued output for the function . For example : for a given x if f(x)>threshold classify it to be 1 else classify it to be 0.
For example given a set of brain tumour size as training data we can use the size as input to determine whether its a benine or malignant tumour. Therefore here the output is discreet either 0 or 1.
*here the function is basically the hypothesis function
They are both quite similar in solving for the solution, but as others have said, one (Logistic Regression) is for predicting a category "fit" (Y/N or 1/0), and the other (Linear Regression) is for predicting a value.
So if you want to predict if you have cancer Y/N (or a probability) - use logistic. If you want to know how many years you will live to - use Linear Regression !
Regression means continuous variable, Linear means there is linear relation between y and x.
Ex= You are trying to predict salary from no of years of experience. So here salary is independent variable(y) and yrs of experience is dependent variable(x).
y=b0+ b1*x1
We are trying to find optimum value of constant b0 and b1 which will give us best fitting line for your observation data.
It is a equation of line which gives continuous value from x=0 to very large value.
This line is called Linear regression model.
Logistic regression is type of classification technique. Dnt be misled by term regression. Here we predict whether y=0 or 1.
Here we first need to find p(y=1) (wprobability of y=1) given x from formuale below.
Probaibility p is related to y by below formuale
Ex=we can make classification of tumour having more than 50% chance of having cancer as 1 and tumour having less than 50% chance of having cancer as 0.
Here red point will be predicted as 0 whereas green point will be predicted as 1.
Cannot agree more with the above comments.
Above that, there are some more differences like
In Linear Regression, residuals are assumed to be normally distributed.
In Logistic Regression, residuals need to be independent but not normally distributed.
Linear Regression assumes that a constant change in the value of the explanatory variable results in constant change in the response variable.
This assumption does not hold if the value of the response variable represents a probability (in Logistic Regression)
GLM(Generalized linear models) does not assume a linear relationship between dependent and independent variables. However, it assumes a linear relationship between link function and independent variables in logit model.
| Basis | Linear | Logistic |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Basic | The data is modelled using a straight line. | The probability of some obtained event is represented as a linear function of a combination of predictor variables. |
| Linear relationship between dependent and independent variables | Is required | Not required |
| The independent variable | Could be correlated with each other. (Specially in multiple linear regression) | Should not be correlated with each other (no multicollinearity exist). |
In short:
Linear Regression gives continuous output. i.e. any value between a range of values.
Logistic Regression gives discrete output. i.e. Yes/No, 0/1 kind of outputs.
To put it simply, if in linear regression model more test cases arrive which are far away from the threshold(say =0.5)for a prediction of y=1 and y=0. Then in that case the hypothesis will change and become worse.Therefore linear regression model is not used for classification problem.
Another Problem is that if the classification is y=0 and y=1, h(x) can be > 1 or < 0.So we use Logistic regression were 0<=h(x)<=1.
Logistic Regression is used in predicting categorical outputs like Yes/No, Low/Medium/High etc. You have basically 2 types of logistic regression Binary Logistic Regression (Yes/No, Approved/Disapproved) or Multi-class Logistic regression (Low/Medium/High, digits from 0-9 etc)
On the other hand, linear regression is if your dependent variable (y) is continuous.
y = mx + c is a simple linear regression equation (m = slope and c is the y-intercept). Multilinear regression has more than 1 independent variable (x1,x2,x3 ... etc)
In linear regression the outcome is continuous whereas in logistic regression, the outcome has only a limited number of possible values(discrete).
example:
In a scenario,the given value of x is size of a plot in square feet then predicting y ie rate of the plot comes under linear regression.
If, instead, you wanted to predict, based on size, whether the plot would sell for more than 300000 Rs, you would use logistic regression. The possible outputs are either Yes, the plot will sell for more than 300000 Rs, or No.
In case of Linear Regression the outcome is continuous while in case of Logistic Regression outcome is discrete (not continuous)
To perform Linear regression we require a linear relationship between the dependent and independent variables. But to perform Logistic regression we do not require a linear relationship between the dependent and independent variables.
Linear Regression is all about fitting a straight line in the data while Logistic Regression is about fitting a curve to the data.
Linear Regression is a regression algorithm for Machine Learning while Logistic Regression is a classification Algorithm for machine learning.
Linear regression assumes gaussian (or normal) distribution of dependent variable. Logistic regression assumes binomial distribution of dependent variable.
The basic difference between Linear Regression and Logistic Regression is :
Linear Regression is used to predict a continuous or numerical value but when we are looking for predicting a value that is categorical Logistic Regression come into picture.
Logistic Regression is used for binary classification.