I am trying to detect foreground motion using opencv2 by removing static (mostly) BG elements. The method I am using is based on taking the mean of a series of images - representing the background. Then calculating one Standard deviation above and below that mean. Using that as a window to detect foreground motion.
This mechanism reportedly works well for moderately noisy environments like waving trees in the BG.
The desired output is a mask that can be used in a subsequent operation so as to minimise further processing. Specifically I am going to use optical flow detection within that region.
cv2 has made this much easier and the code is much simpler to read and understand. Thanks cv2 and numpy.
But I am having difficulty doing the correct FG detection.
Ideally I also want to erode/dilate the BG mean so as to eleminate 1 pixel noise.
The code is all togethr so you have a number of frames at the start (BGsample) to gather the BG data before FG detection starts. the only dependencies are opencv2 (> 2.3.1 ) and numpy (which should be included in > opencv 2.3.1 )
import cv2
import numpy as np
if __name__ == '__main__':
cap = cv2.VideoCapture(0) # webcam
cv2.namedWindow("input")
cv2.namedWindow("sig2")
cv2.namedWindow("detect")
BGsample = 20 # number of frames to gather BG samples from at start of capture
success, img = cap.read()
width = cap.get(3)
height = cap.get(4)
# can use img.shape(:-1) # cut off extra channels
if success:
acc = np.zeros((height, width), np.float32) # 32 bit accumulator
sqacc = np.zeros((height, width), np.float32) # 32 bit accumulator
for i in range(20): a = cap.read() # dummy to warm up sensor
# gather BG samples
for i in range(BGsample):
success, img = cap.read()
frame = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.accumulate(frame, acc)
cv2.accumulateSquare(frame, sqacc)
#
M = acc/float(BGsample)
sqaccM = sqacc/float(BGsample)
M2 = M*M
sig2 = sqaccM-M2
# have BG samples now
# start FG detection
key = -1
while(key < 0):
success, img = cap.read()
frame = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#Ideally we create a mask for future use that is B/W for FG objects
# (using erode or dilate to remove noise)
# this isn't quite right
level = M+sig2-frame
grey = cv2.morphologyEx(level, cv2.MORPH_DILATE,
cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3)), iterations=2)
cv2.imshow("input", frame)
cv2.imshow("sig2", sig2/60)
cv2.imshow("detect", grey/20)
key = cv2.waitKey(1)
cv2.destroyAllWindows()
I don't think you need to manually compute the mean and standard deviation use cv2.meanStdDev instead. In the code below, I'm using your average background matrix computed from
M = acc/float(BGsample)
So, now we can compute the mean and standard deviation of the average background image, and finally inRange is used to pull out the range that you wanted (i.e., the mean +/- 1 standard deviation).
(mu, sigma) = cv2.meanStdDev(M)
fg = cv2.inRange(M, (mu[0] - sigma[0]), (mu[0] + sigma[0]))
# proceed with morphological clean-up here...
Hope that helps!
my best guess so far. Using detectmin, max to coerce the fp sigma into grayscale for the cv2.inRange to use.
Seems to work OK but was hoping for better... plenty of holes in valid FG data.
I suppose it would work better in rgb instead of grayscale.
Can't get noise reduction using dilate or erode to work.
Any improvements ?
import cv2
import numpy as np
if __name__ == '__main__':
cap = cv2.VideoCapture(1)
cv2.namedWindow("input")
#cv2.namedWindow("sig2")
cv2.namedWindow("detect")
BGsample = 20 # number of frames to gather BG samples from at start of capture
success, img = cap.read()
width = cap.get(3)
height = cap.get(4)
if success:
acc = np.zeros((height, width), np.float32) # 32 bit accumulator
sqacc = np.zeros((height, width), np.float32) # 32 bit accumulator
for i in range(20): a = cap.read() # dummy to warm up sensor
# gather BG samples
for i in range(BGsample):
success, img = cap.read()
frame = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.accumulate(frame, acc)
cv2.accumulateSquare(frame, sqacc)
#
M = acc/float(BGsample)
sqaccM = sqacc/float(BGsample)
M2 = M*M
sig2 = sqaccM-M2
# have BG samples now
# calculate upper and lower bounds of detection window around mean.
# coerce into 8bit image space for cv2.inRange compare
detectmin = cv2.convertScaleAbs(M-sig2)
detectmax = cv2.convertScaleAbs(M+sig2)
# start FG detection
key = -1
while(key < 0):
success, img = cap.read()
frame = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
level = cv2.inRange(frame, detectmin, detectmax)
cv2.imshow("input", frame)
#cv2.imshow("sig2", M/200)
cv2.imshow("detect", level)
key = cv2.waitKey(1)
cv2.destroyAllWindows()
Related
Maybe someone has ideas how can we fill black pixels to white on the white digits and make that image more adopted to be recognizable
I was trying the Gaussian Blur with Kernel size (1,1), but it doesn't help effectively, sometimes digits on image become merged and this is much worst result
You may use the equivalent to MATLAB imfill, but the result is going to be binary image.
I found a Python implementation for imfill here (it uses Scikit-image).
Here is the code:
import cv2
import numpy as np
from skimage.morphology import reconstruction
def imfill(img):
# https://stackoverflow.com/questions/36294025/python-equivalent-to-matlab-funciton-imfill-for-grayscale
# Use the matlab reference Soille, P., Morphological Image Analysis: Principles and Applications, Springer-Verlag, 1999, pp. 208-209.
# 6.3.7 Fillhole
# The holes of a binary image correspond to the set of its regional minima which
# are not connected to the image border. This definition holds for grey scale
# images. Hence, filling the holes of a grey scale image comes down to remove
# all minima which are not connected to the image border, or, equivalently,
# impose the set of minima which are connected to the image border. The
# marker image 1m used in the morphological reconstruction by erosion is set
# to the maximum image value except along its border where the values of the
# original image are kept:
seed = np.ones_like(img)*255
img[ : ,0] = 0
img[ : ,-1] = 0
img[ 0 ,:] = 0
img[ -1 ,:] = 0
seed[ : ,0] = 0
seed[ : ,-1] = 0
seed[ 0 ,:] = 0
seed[ -1 ,:] = 0
fill_img = reconstruction(seed, img, method='erosion')
return fill_img
img = cv2.imread('5375.jpg', cv2.IMREAD_GRAYSCALE) # Read image as grayscale
img_thresh = cv2.threshold(img, 0, 255, cv2.THRESH_OTSU)[1] # Convert to B/W
fill_img = imfill(img_thresh)
cv2.imshow('img', img)
cv2.imshow('fill_img', fill_img)
cv2.waitKey()
cv2.destroyAllWindows()
Result:
Note:
You may get the same result using cv2.findContours and drawContours, but you should apply findContours on img_thresh.
In case you want closer result to the original image, you may use closing morphological operation, and use 'fill_img' as a mask:
closed_img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, np.ones((35, 35)))
closed_img[fill_img == 0] = 0 # Set to zero where fill_img is zero.
Result:
I would like to create a program that is able to extract lines from a graph.
For example, if a graph like this is inputted, I would just want the red line to be outputted.
Below I have tried to do this using a hough line transformation, however, I do not get very promising results.
import cv2
import numpy as np
graph_img = cv2.imread("/Users/2020shatgiskessell/Desktop/Graph1.png")
gray = cv2.cvtColor(graph_img, cv2.COLOR_BGR2GRAY)
kernel_size = 5
#grayscale image
blur_gray = cv2.GaussianBlur(gray,(kernel_size, kernel_size),0)
#Canny edge detecion
edges = cv2.Canny(blur_gray, 50, 150)
#Hough Lines Transformation
#distance resoltion of hough grid (pixels)
rho = 1
#angular resolution of hough grid (radians)
theta = np.pi/180
#minimum number of votes
threshold = 15
#play around with these
min_line_length = 25
max_line_gap = 20
#make new image
line_image = np.copy(graph_img)
#returns array of lines
lines = cv2.HoughLinesP(edges, rho, theta, threshold, np.array([]),
min_line_length, max_line_gap)
for line in lines:
for x1,y1,x2,y2 in line:
cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),2)
lines_edges = cv2.addWeighted(graph_img, 0.8, line_image, 1, 0)
cv2.imshow("denoised image",edges)
if cv2.waitKey(0) & 0xff == 27:
cv2.destroyAllWindows()
This produces the output image below, which does not accurately recognize the graph line. How might I go about doing this?
Note: For now, I am not concerned about the graph titles or any other text.
I would also like the code to work for other graph images aswell, such as:
etc.
If the graph does not have many noises around it (like your example) I would suggest to threshold your image with Otsu threshold instead of looking for edges . Then you simply search the contours, select the biggest one (graph) and draw it on a blank mask. After that you can perform a bitwise operation on image with the mask and you will get a black image with the graph. If you like the white background better, then simply change all black pixels to white. Steps are written in the example. Hope it helps a bit. Cheers!
Example:
import numpy as np
import cv2
# Read the image and create a blank mask
img = cv2.imread('graph.png')
h,w = img.shape[:2]
mask = np.zeros((h,w), np.uint8)
# Transform to gray colorspace and threshold the image
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
# Search for contours and select the biggest one and draw it on mask
_, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
cnt = max(contours, key=cv2.contourArea)
cv2.drawContours(mask, [cnt], 0, 255, -1)
# Perform a bitwise operation
res = cv2.bitwise_and(img, img, mask=mask)
# Convert black pixels back to white
black = np.where(res==0)
res[black[0], black[1], :] = [255, 255, 255]
# Display the image
cv2.imshow('img', res)
cv2.waitKey(0)
cv2.destroyAllWindows()
Result:
EDIT:
For noisier pictures you could try this code. Note that different graphs have different noises and may not work on every graph image since the denoisiation process would be specific in every case. For different noises you can use different ways to denoise it, for example histogram equalization, eroding, blurring etc. This code works well for all 3 graphs. Steps are written in comments. Hope it helps. Cheers!
import numpy as np
import cv2
# Read the image and create a blank mask
img = cv2.imread('graph.png')
h,w = img.shape[:2]
mask = np.zeros((h,w), np.uint8)
# Transform to gray colorspace and threshold the image
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
# Perform opening on the thresholded image (erosion followed by dilation)
kernel = np.ones((2,2),np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
# Search for contours and select the biggest one and draw it on mask
_, contours, hierarchy = cv2.findContours(opening,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
cnt = max(contours, key=cv2.contourArea)
cv2.drawContours(mask, [cnt], 0, 255, -1)
# Perform a bitwise operation
res = cv2.bitwise_and(img, img, mask=mask)
# Threshold the image again
gray = cv2.cvtColor(res,cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
# Find all non white pixels
non_zero = cv2.findNonZero(thresh)
# Transform all other pixels in non_white to white
for i in range(0, len(non_zero)):
first_x = non_zero[i][0][0]
first_y = non_zero[i][0][1]
first = res[first_y, first_x]
res[first_y, first_x] = 255
# Display the image
cv2.imshow('img', res)
cv2.waitKey(0)
cv2.destroyAllWindows()
Result:
I am trying to preform face tracking with the Lucas Kanade algorithm with Haar Cascade Classification. The Lucas Kanade is successful and can track the user, but unfortunately, some of the good features to detect points are wasted on corners in the background. I wish to use Haar Cascade's ability to detect the fact to get coordinates of detected face and apply Lucas Kanade to only within that restricted area.
Basically, I want to use Haar Cascade to detect fact, get x, y, w, and h values, and use those coordinates to apply Lucas Kanade within that restricted area (so that none are wasted on assigning good features to the background and only facial features are detected)
The line of code that is doing the Lucas Kanade algorithm is this code:
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
How do I do that?
Code:
from matplotlib import pyplot as plt
import numpy as np
import cv2
rectangle_x = 0
face_classifier = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml')
cap = cv2.VideoCapture(0)
# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 200,
qualityLevel = 0.01,
minDistance = 10,
blockSize = 7 )
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Create some random colors
color = np.random.randint(0,255,(100,3))
# Take first frame and find corners in it
ret, old_frame = cap.read()
cv2.imshow('Old_Frame', old_frame)
cv2.waitKey(0)
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
restart = True
face = face_classifier.detectMultiScale(old_gray, 1.2, 4)
if len(face) == 0:
print "This is empty"
for (x,y,w,h) in face:
focused_face = old_frame[y: y+h, x: x+w]
cv2.imshow('Old_Frame', old_frame)
face_gray = cv2.cvtColor(old_frame,cv2.COLOR_BGR2GRAY)
gray = cv2.cvtColor(focused_face,cv2.COLOR_BGR2GRAY)
corners_t = cv2.goodFeaturesToTrack(gray, mask = None, **feature_params)
corners = np.int0(corners_t)
for i in corners:
ix,iy = i.ravel()
cv2.circle(focused_face,(ix,iy),3,255,-1)
cv2.circle(old_frame,(x+ix,y+iy),3,255,-1)
print ix, " ", iy
plt.imshow(old_frame),plt.show()
##########
#############################
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
#############################
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
print "X: ", x
print "Y: ", y
while(1):
ret,frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
good_new = p1[st==1]
good_old = p0[st==1]
# draw the circles
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
cv2.circle(frame,(a, b),5,color[i].tolist(),-1)
if i == 99:
break
cv2.imshow('frame',frame)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
cv2.destroyAllWindows()
cap.release()
Here is the code snippet:
p0 = np.array([[[x,y]], [[x0,y0]]], np.float32)
just replace p0 in original code and and assign x,x0... with your desired points
- make sure its a 2d array
- and the type is float 32 for single precision
I have an image which I want to detect edges on that. I found Canny has been used a lot ( I don't know whether I have a better option than that). I have set the values as follow:
Imgproc.Canny(img, img, 10, 100, 3,true)
I've changed threshold values but don't see that much of a change in my image. Can anyone explain to me if there is a logical way to figure out numbers for threshold values (my image is gray scale)
Thank you...
I think this should be taken case by case, if you post some sample images would be useful, but I will try to answer anyways. Here is from Opencv Documents
Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );
where the arguments are:
detected_edges: Source image, grayscale
detected_edges: Output of the detector (can be the same as the input)
lowThreshold: The value entered by the user moving the Trackbar
highThreshold: Set in the program as three times the lower threshold (following Canny’s recommendation)
kernel_size: We defined it to be 3 (the size of the Sobel kernel to be used internally)
What usually works for me is highThreshold = 255 and lowThreshold = 255/3
As Samer said it could be case by case. Here is some code that uses trackbars in opencv, and displays the canny image next to the original, in order to quickly experiment with different threshold values.
import cv2
import numpy as np
import matplotlib.pyplot as plt
def callback(x):
print(x)
img = cv2.imread('your_image.png', 0) #read image as grayscale
canny = cv2.Canny(img, 85, 255)
cv2.namedWindow('image') # make a window with name 'image'
cv2.createTrackbar('L', 'image', 0, 255, callback) #lower threshold trackbar for window 'image
cv2.createTrackbar('U', 'image', 0, 255, callback) #upper threshold trackbar for window 'image
while(1):
numpy_horizontal_concat = np.concatenate((img, canny), axis=1) # to display image side by side
cv2.imshow('image', numpy_horizontal_concat)
k = cv2.waitKey(1) & 0xFF
if k == 27: #escape key
break
l = cv2.getTrackbarPos('L', 'image')
u = cv2.getTrackbarPos('U', 'image')
canny = cv2.Canny(img, l, u)
cv2.destroyAllWindows()
You can use this equation it is useful and you can apply bluer to enhance it.
blurred_img = cv2.blur(img,ksize=(5,5))
med_val = np.median(img)
lower = int(max(0 ,0.7*median_pix))
upper = int(min(255,1.3*median_pix))
edges = cv2.Canny(image=img, threshold1=lower,threshold2=upper)
I'm studying Image Processing on the famous Gonzales "Digital Image Processing" and talking about image restoration a lot of examples are done with computer-generated noise (gaussian, salt and pepper, etc). In MATLAB there are some built-in functions to do it. What about OpenCV?
As far as I know there are no convenient built in functions like in Matlab. But with only a few lines of code you can create those images yourself.
For example additive gaussian noise:
Mat gaussian_noise = img.clone();
randn(gaussian_noise,128,30);
Salt and pepper noise:
Mat saltpepper_noise = Mat::zeros(img.rows, img.cols,CV_8U);
randu(saltpepper_noise,0,255);
Mat black = saltpepper_noise < 30;
Mat white = saltpepper_noise > 225;
Mat saltpepper_img = img.clone();
saltpepper_img.setTo(255,white);
saltpepper_img.setTo(0,black);
There is function random_noise() from the scikit-image package. It has several builtin noise patterns, such as gaussian, s&p (for salt and pepper noise), possion and speckle.
Below I show an example of how to use this method
from PIL import Image
import numpy as np
from skimage.util import random_noise
im = Image.open("test.jpg")
# convert PIL Image to ndarray
im_arr = np.asarray(im)
# random_noise() method will convert image in [0, 255] to [0, 1.0],
# inherently it use np.random.normal() to create normal distribution
# and adds the generated noised back to image
noise_img = random_noise(im_arr, mode='gaussian', var=0.05**2)
noise_img = (255*noise_img).astype(np.uint8)
img = Image.fromarray(noise_img)
img.show()
There is also a package called imgaug which are dedicated to augment images in various ways. It provides gaussian, poissan and salt&pepper noise augmenter. Here is how you can use it to add noise to image:
from PIL import Image
import numpy as np
from imgaug import augmenters as iaa
def main():
im = Image.open("bg_img.jpg")
im_arr = np.asarray(im)
# gaussian noise
# aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.1*255)
# poisson noise
# aug = iaa.AdditivePoissonNoise(lam=10.0, per_channel=True)
# salt and pepper noise
aug = iaa.SaltAndPepper(p=0.05)
im_arr = aug.augment_image(im_arr)
im = Image.fromarray(im_arr).convert('RGB')
im.show()
if __name__ == "__main__":
main()
Simple Function to add Gaussian, Salt-pepper speckle and poisson noise to an image
Parameters
----------
image : ndarray
Input image data. Will be converted to float.
mode : str
One of the following strings, selecting the type of noise to add:
'gauss' Gaussian-distributed additive noise.
'poisson' Poisson-distributed noise generated from the data.
's&p' Replaces random pixels with 0 or 1.
'speckle' Multiplicative noise using out = image + n*image,where
n,is uniform noise with specified mean & variance.
import numpy as np
import os
import cv2
def noisy(noise_typ,image):
if noise_typ == "gauss":
row,col,ch= image.shape
mean = 0
#var = 0.1
#sigma = var**0.5
gauss = np.random.normal(mean,1,(row,col,ch))
gauss = gauss.reshape(row,col,ch)
noisy = image + gauss
return noisy
elif noise_typ == "s&p":
row,col,ch = image.shape
s_vs_p = 0.5
amount = 0.004
out = image
# Salt mode
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt))
for i in image.shape]
out[coords] = 1
# Pepper mode
num_pepper = np.ceil(amount* image.size * (1. - s_vs_p))
coords = [np.random.randint(0, i - 1, int(num_pepper))
for i in image.shape]
out[coords] = 0
return out
elif noise_typ == "poisson":
vals = len(np.unique(image))
vals = 2 ** np.ceil(np.log2(vals))
noisy = np.random.poisson(image * vals) / float(vals)
return noisy
elif noise_typ =="speckle":
row,col,ch = image.shape
gauss = np.random.randn(row,col,ch)
gauss = gauss.reshape(row,col,ch)
noisy = image + image * gauss
return noisy
"Salt & Pepper" noise can be added in a quite simple fashion using NumPy matrix operations.
def add_salt_and_pepper(gb, prob):
'''Adds "Salt & Pepper" noise to an image.
gb: should be one-channel image with pixels in [0, 1] range
prob: probability (threshold) that controls level of noise'''
rnd = np.random.rand(gb.shape[0], gb.shape[1])
noisy = gb.copy()
noisy[rnd < prob] = 0
noisy[rnd > 1 - prob] = 1
return noisy
# Adding noise to the image
import cv2
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
img = cv2.imread('./fruit.png',0)
im = np.zeros(img.shape, np.uint8) # do not use original image it overwrites the image
mean = 0
sigma = 10
cv2.randn(im,mean,sigma) # create the random distribution
Fruit_Noise = cv2.add(img, im) # add the noise to the original image
plt.imshow(Fruit_Noise, cmap='gray')
The values of mean and sigma can be altered to bring about a specific change in noise like gaussian or pepper-salt noise etc.
You can use either randn or randu according to the need. Have a look at the documentation: https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#cv2.randu
I made some change of #Shubham Pachori 's code. When reading a image into numpy arrary, the default dtype is uint8, which can cause wrapping when adding noise onto the image.
import numpy as np
from PIL import Image
"""
image: read through PIL.Image.open('path')
sigma: variance of gaussian noise
factor: the bigger this value is, the more noisy is the poisson_noised image
##IMPORTANT: when reading a image into numpy arrary, the default dtype is uint8,
which can cause wrapping when adding noise onto the image.
E.g, example = np.array([128,240,255], dtype='uint8')
example + 50 = np.array([178,44,49], dtype='uint8')
Transfer np.array to dtype='int16' can solve this problem.
"""
def gaussian_noise(image, sigma):
img = np.array(image)
noise = np.random.randn(img.shape[0], img.shape[1], img.shape[2])
img = img.astype('int16')
img_noise = img + noise * sigma
img_noise = np.clip(img_noise, 0, 255)
img_noise = img_noise.astype('uint8')
return Image.fromarray(img_noise)
def poisson_noise(image, factor):
factor = 1 / factor
img = np.array(image)
img = img.astype('int16')
img_noise = np.random.poisson(img * factor) / float(factor)
np.clip(img_noise, 0, 255, img_noise)
img_noise = img_noise.astype('uint8')
return Image.fromarray(img_noise)
http://scikit-image.org/docs/dev/api/skimage.util.html#skimage.util.random_noise
skimage.util.random_noise(image, mode='gaussian', seed=None, clip=True, **kwargs)
#Adding noise
[m,n]=img.shape
saltpepper_noise=zeros((m, n));
saltpepper_noise=rand(m,n); #creates a uniform random variable from 0 to 1
for i in range(0,m):
for j in range(0,n):
if saltpepper_noise[i,j]<=0.5:
saltpepper_noise[i,j]=0
else:
saltpepper_noise[i,j]=255
def add_salt_noise(src, ratio: float = 0.05, noise: list = [0, 0, 0]):
dst = src.copy()
import random
shuffle_dict = {}
i = 0
while i < (int(dst.shape[0]*dst.shape[1] * ratio)):
x, y = random.randint(0, dst.shape[0] - 1), random.randint(0, dst.shape[1] - 1)
if (x, y) in shuffle_dict:
continue
else:
dst[x, y] = noise
shuffle_dict[(x, y)] = 0
i += 1
return dst
although there is no built-in functions like in matlab
imnoise(image,noiseType,NoiseLevel) but we can easily add required amount random
valued impulse noise or salt and pepper into an image manually.
to add random valued impulse noise.
import random as r
def addRvinGray(image,n): # add random valued impulse noise in grayscale
'''parameters:
image: type=numpy array. input image in which you want add noise.
n: noise level (in percentage)'''
k=0 # counter variable
ih=image.shape[0]
iw=image.shape[1]
noisypixels=(ih*iw*n)/100 # here we calculate the number of pixels to be altered.
for i in range(ih*iw):
if k<noisypixels:
image[r.randrange(0,ih)][r.randrange(0,iw)]=r.randrange(0,256) #access random pixel in the image gives random intensity (0-255)
k+=1
else:
break
return image
to add salt and pepper noise
def addSaltGray(image,n): #add salt-&-pepper noise in grayscale image
k=0
salt=True
ih=image.shape[0]
iw=image.shape[1]
noisypixels=(ih*iw*n)/100
for i in range(ih*iw):
if k<noisypixels: #keep track of noise level
if salt==True:
image[r.randrange(0,ih)][r.randrange(0,iw)]=255
salt=False
else:
image[r.randrange(0,ih)][r.randrange(0,iw)]=0
salt=True
k+=1
else:
break
return image
Note: for color images: first split image in to three or four channels depending on the input image using opencv function:
(B, G, R) = cv2.split(image)
(B, G, R, A) = cv2.split(image)
after spliting perform the same operations on all channels.
at the end merge all the channels:
merged = cv2.merge([B, G, R])
return merged