How to improve Website Waiting time? - yslow

While website loading speed testing I found that website is sometimes loading very quickly and some times it takes lot of time to start loading. When I checked it in detail, I found on some requests wait time was just in few hundred milliseconds, while on some other request which was slow it was actually taking 5 to 30 seconds in wait time.
What may be the cause of this kind of deviation from few milliseconds to 30 or more seconds. And how to improve it.
The site is build upon ASP.net MVC3 and Microsoft SQL Server database.

What patterns are there i.e. are the same URLs always slow, and other URLs always fast, or does it just appear to be random?
Look at what else is running on the server, is it a dedicated server or a VPS?
Look at the DB performance i.e. is it consistent, which are the queries that are taking the longest time, most CPU, most IO etc.
How busy is the site, do the slowdowns match when the app-pool is being recycled or started up?

Related

Randomly degrading heroku DB performance?

So I am working on a pretty high traffic rails/heroku/postgres app, the backend only, and after running for hours, days, or weeks at times the database will randomly start taking 120 seconds to perform queries that usually take 2-3 seconds, and it clears up as soon as the app is restarted and everyone is essentially "kicked off". What could cause a database to start taking a ridiculously long time to perform all queries? The database is not running out of memory, it is being vacuumed regularly, and it is not running out of connections. There are around 500 users at times, dynos are autoscaling, and the web server is passenger. However this is probably something with PG as it is happening at the query level.

My server gets overloaded even though I keep a limit on the requests I send it

I have a server on Heroku - 3 dynos, 2 processes each.
The server does 2 things:
It responds to requests from the browser (AJAX and some web pages), based on data stored in a postgresql database
It exposes a REST API to update the data in the database. This API is called by another server. The rate of calls is limited: The other server only calls my server through a queue with a single worker, which makes sure the other server doesn't issue more than one request in parallel to my server (I verified that indeed it doesn't).
When I look at new relic, I see the following graph, which suggests that even though I keep the other server at one parallel request at most, it still loads my server which creates peaks.
I'd expect that since the rate of calls from the other server is limited, my server will not get overloaded, since a request will only start when the previous request ended (I'm guessing that maybe the database gets overloaded if it gets an update request and returns but continue processing after that).
What can explain this behaviour?
Where else can I look at in order to understand what's going on?
Is there a way to avoid this behaviour?
There are whole lot of directions this investigation could go, but from your screenshot and some inferences, I have two guesses.
A long query—You'd see this graph if your other server or a browser occasionally hits a slow query. If it's just a long read query and your DB isn't hitting its limits, it should only affect the process running the query, but if the query is taking an exclusive lock, all dynos will have to wait on it. Since the spikes are so regular, first think of anything you have running on a schedule - if the cadence matches, you probably have your culprit. The next simple thing to do is run heroku pg:long-running-queries and heroku pg:seq-scans. The former shows queries that might need optimization, and the latter shows full table scans you can probably fix with a different query or a better index. You can find similar information in NewRelic's Database tab, which has time and throughput graphs you can try to match agains your queueing spikes. Finally, look at NewRelic's Transactions tab.
There are various ways to sort - slowest average response time is probably going to help, but check out all the options and see if any transactions stand out.
Click on a suspicious transaction and look at the graph on the right. If you see spikes matching your queueing buildups, that could be it, but since it looks to be affecting your whole site, watch out for several transactions seeing correlated slowdowns.
Check out the transaction traces at the bottom. Something in there taking a long time to run is as close to a smoking gun as you'll get. This should correlate with pg:long-running-queries.
Look at the breakdown table between the graph and the transaction traces. Check for things that are taking a long time (eg. a 2 second external request) or happening often (eg, a partial that gets rendered 2500 times per request). Those are places for caching or optimization.
Garbage collection—This is less likely because Ruby GCs all the time and there's no reason it would show spikes on that regular cadence, but if there's a regular request that allocates a ton of objects, both building the objects and cleaning them up will take time. It would only affect one dyno at once, and it would be correlated with a long or highly repetitive query in your NewRelic investigation. You can see some stats about this in NewRelic's Ruby VM tab.
Take a look at your dyno and DB memory usage too. Both are printed to the Heroku logs, and if you add Librato, they'll build some automatic graphs that are quite helpful. If your dyno is swapping, performance will suffer and you should either upgrade to a bigger dyno or run fewer processes per dyno. Processes will typically accumulate memory as they run and never quite release as much as you'd like, so tune it so that right before a restart, your dyno is just under its available RAM. Similarly for the DB, if you're hitting swap there, query performance will suffer and you should upgrade.
Other things it could be, but probably isn't in this case:
Sleeping dynos—Heroku puts a dyno to sleep if it hasn't served a request in a while, but only if you have just 1 dyno running. You have 3, so this isn't it.
Web Server Concurrency—If at any given moment, there are more requests than available processes, requests will be queued. The obvious fix is to increase the available dynos/processes, which will put more load on your DB and potentially move the issue there. Since some regular request is visible every time, I'm guessing request volume is low and this also isn't your problem.
Heroku Instability—Sometimes, for no obvious reason, Heroku starts queueing requests more than it should and doesn't report any issues at status.heroku.com. Restarting the dynos typically fixes that temporarily while Heroku gets their head back on straight.

Pointers to speed up web app startup time

My SaaS ASP.Net MVC web app startup time is about 20 to 30 seconds. The typical usage pattern is tied to business hours. So, when the first user in the morning browses to the home page, the page takes about 20 to 30 seconds to load. Thereafter, performance on subsequent page loads is not a problem.
It's running on cloud-hosted infrastructure...Win2008 R2, quad core Xeon with 6GB RAM.
Any pointers as to what I can do to improve this startup time?
The problem might be that your application is being shutdown during idle periods. Try setting up a service to periodically make a request to your application and keep it alive.

Load-testing web-app

When load testing a basic web application, what sanity checks do you do other than expected response time?
Is it fair to ask for peak memory usage?
What other checks do you make?
On the server
Requests per second the application can withstand
Requests per second that hit the database (if any, related to the number above, but it's useful to have them as separate figures)
Transferred bandwidth (separated by media type, if possible)
CPU utilization
Memory utilization
On the client
Response time
Weight of the average page
Is the CPU usage high at any time
Run something like YSlow to see what can you optimize on the output to make it quick for users
Stress testing tools usually come with most of these measures (except for Memory, CPU and database usage), as do YSlow or Firebug do on the client.
We look at a pretty wide variety of metrics when analyzing the results of a load test.
On the server, we start with these main 4 categories:
CPU (% utilization, context switches/sec, process queue length)
Memory (% use, page reads/sec, page writes/sec)
Bandwidth (incoming, outgoing, send & receive errors, # connections, connection failures, segment retransmits/sec)
Disk (Disk I/O Time %, avg service time, queue length, reads and writes/sec)
We also like look at metrics specific to the webserver and application server in use. For example, in IIS we look at IIS connection counts, cache hit rates and turnover frequency, etc. In .NET, we would be looking at ASP.NET Requests/sec, ASP.NET Last Request Execution Time, ASP.NET Current Requests, ASP.NET Queued Requests, ASP.NET Request Wait Time, ASP.NET Errors/sec and many others.
On the client side, we are primarily looking at total load time for the pages, duration and TTFB (time to first byte) for critical transactions, bandwidth usage, average page size and failure rate. We also find two metrics very useful - we call them Waiting Users and Average Wait Time. Not many tools have these - they tell you at each sample period exactly how many simulated users are in the process of retrieving a resource from the server and how long, on average, they have been waiting for the resource to arrive. We find these very useful for
determining when the server has reached its capacity
discovering that the server has stopped responding to certain types of requests (typically for certain resources, such as those requiring a database query)
Another good sanity check is to run the tests for at least 24 hours. We do that because one app ran nicely for a few hours then degraded. Discovered some issues with scheduled tasks as well as db connection pooling.
There are a number of services online that can do this type of testing for you as well. Of course, one of the downsides to this approach is that its harder to correlate the data from the service (which is what can be observed externally) with your own internal data about disk I/O, DB ops, etc. If you end up going this route I would suggest finding a vendor that will give you programmatic access to the raw test result data.

Web App Performance Problem

I have a website that is hanging every 5 or 10 requests. When it works, it works fast, but if you leave the browser sit for a couple minutes and then click a link, it just hangs without responding. The user has to push refresh a few times in the browser and then it runs fast again.
I'm running .NET 3.5, ASP.NET MVC 1.0 on IIS 7.0 (Windows Server 2008). The web app connects to a SQLServer 2005 DB that is running locally on the same instance. The DB has about 300 Megs of RAM and the rest is free for web requests I presume.
It's hosted on GoGrid's cloud servers, and this instance has 1GB of RAM and 1 Core. I realize that's not much, but currently I'm the only one using the site, and I still receive these hangs.
I know it's a difficult thing to troubleshoot, but I was hoping that someone could point me in the right direction as to possible IIS configuration problems, or what the "rough" average hardware requirements would be using these technologies per 1000 users, etc. Maybe for a webserver the minimum I should have is 2 cores so that if it's busy you still get a response. Or maybe the slashdot people are right and I'm an idiot for using Windows period, lol. In my experience though, it's usually MY algorithm/configuration error and not the underlying technology's fault.
Any insights are appreciated.
What diagnistics are available to you? Can you tell what happens when the user first hits the button? Does your application see that request, and then take ages to process it, or is there a delay and then your app gets going and works as quickly as ever? Or does that first request just get lost completely?
My guess is that there's some kind of paging going on, I beleive that Windows tends to have a habit of putting non-recently used apps out of the way and then paging them back in. Is that happening to your app, or the DB, or both?
As an experiment - what happens if you have a sneekly little "howAreYou" page in your app. Does the tiniest possible amount of work, such as getting a use count from the db and displaying it. Have a little monitor client hit that page every minute or so. Measure Performance over time. Spikes? Consistency? Does the very presence of activity maintain your applicaition's presence and prevent paging?
Another idea: do you rely on any caching? Do you have any kind of aging on that cache?
Your application pool may be shutting down because of inactivity. There is an Idle Time-out setting per pool, in minutes (it's under the pool's Advanced Settings - Process Model). It will take some time for the application to start again once it shuts down.
Of course, it might just be the virtualization like others suggested, but this is worth a shot.
Is the site getting significant traffic? If so I'd look for poorly-optimized queries or queries that are being looped.
Your configuration sounds fine assuming your overall traffic is relatively low.
To many data base connections without being release?
Connecting some service/component that is causing timeout?
Bad resource release?
Network traffic?
Looping queries or in code logic?

Resources