I have to localize from video where the shoulders of a person are in a movie.
Do have any advice on how to get to this?
I thought about corner detection or some kind of shape detection. But I'm still not sure what next. We can treat video like image sequence (I wrote this, but I think is obvious)?
Luckily, the shoulders are usually attached to the head...
I have used the Dalal-Triggs algorithm (Wikipedia) to detect head+shoulders of all persons facing the camera.
Basically, you train a linear SVM on positive examples in which the head+shoulders are marked, and on negative examples that do not contain these body parts. The descriptor is a Histogram of Gradients (HOG) which tells you what edge directions are dominant in each cell of the descriptor. I found that their normalization scheme is very important in dealing with non-uniform lighting.
With enough examples, the linear SVM will provide you with a plane normal that can be interpreted as a descriptor: you can visualize the meaning of the positive weights, and see that they outline the profile of head+shoulders. Likewise, the negative weights will belong to the areas outside the body, and/or directions orthogonal to the profile edges.
You can apply the linear SVM classifier on each image efficiently at multiple scales and aspect ratios, and find the image patch with best response. This should give you the location of the head and shoulders (it will not be exact, though)
Related
When reading about classic computer vision I am confused on how multiscale feature matching works.
Suppose we use an image pyramid,
How do you deal with the same feature being detected at multiple scales? How do you decide which to make a deacriptor for?
How do you connected features between scales? For example let's say you have a feature detected and matched to a descriptor at scale .5. Is this location then translated to its location in the initial scale?
I can share something about SIFT that might answer question (1) for you.
I'm not really sure what you mean in your question (2) though, so please clarify?
SIFT (Scale-Invariant Feature Transform) was designed specifically to find features that remains identifiable across different image scales, rotations, and transformations.
When you run SIFT on an image of some object (e.g. a car), SIFT will try to create the same descriptor for the same feature (e.g. the license plate), no matter what image transformation you apply.
Ideally, SIFT will only produce a single descriptor for each feature in an image.
However, this obviously doesn't always happen in practice, as you can see in an OpenCV example here:
OpenCV illustrates each SIFT descriptor as a circle of different size. You can see many cases where the circles overlap. I assume this is what you meant in question (1) by "the same feature being detected at multiple scales".
And to my knowledge, SIFT doesn't really care about this issue. If by scaling the image enough you end up creating multiple descriptors from "the same feature", then those are distinct descriptors to SIFT.
During descriptor matching, you simply brute-force compare your list of descriptors, regardless of what scale it was generated from, and try to find the closest match.
The whole point of SIFT as a function, is to take in some image feature under different transformations, and produce a similar numerical output at the end.
So if you do end up with multiple descriptors of the same feature, you'll just end up having to do more computational work, but you will still essentially match the same pair of feature across two images regardless.
Edit:
If you are asking about how to convert coordinates from the scaled images in the image pyramid back into original image coordinates, then David Lowe's SIFT paper dedicates section 4 on that topic.
The naive approach would be to simply calculate the ratios of the scaled coordinates vs the scaled image dimensions, then extrapolate back to the original image coordinates and dimensions. However, this is inaccurate, and becomes increasingly so as you scale down an image.
Example: You start with a 1000x1000 pixel image, where a feature is located at coordinates (123,456). If you had scaled down the image to 100x100 pixel, then the scaled keypoint coordinate would be something like (12,46). Extrapolating back to the original coordinates naively would give the coordinates (120,460).
So SIFT fits a Taylor expansion of the Difference of Gaussian function, to try and locate the original interesting keypoint down to sub-pixel levels of accuracy; which you can then use to extrapolate back to the original image coordinates.
Unfortunately, the math for this part is quite beyond me. But if you are fluent in math, C programming, and want to know specifically how SIFT is implemented; I suggest you dive into Rob Hess' SIFT implementation, lines 467 through 648 is probably the most detailed you can get.
I am working on a hand detection project. There are many good project on web to do this, but what I need is a specific hand pose detection. It needs a totally open palm and the whole palm face to outwards, like the image below:
The first hand faces to inwards, so it will not be detected, and the right one faces to outwards, it will be detected. Now I can detect hand with OpenCV. but how to tell the hand orientation?
Problem of matching with the forehand belongs to the texture classification, it's a classic pattern recognition problem. I suggest you to try one of the following methods:
Gabor filters: it is good to detect the orientation and pixel intensities (as forehand has different features), opencv has getGaborKernel function, the very important params of this function is theta (orientation) and lambd: (frequencies). To make it simple you can apply this process on a cropped zone of palm (as you have already detected it, it would be easy to crop for example the thumb, or a rectangular zone around the gravity center..etc). Then you can convolute it with a small database of images of the same zone to get the a rate of matching, or you can use the SVM classifier, where you have to train your SVM on a set of images by constructing the training matrix needed for SVM (check this question), this paper
Local Binary Patterns (LBP): it's an important feature descriptor used for texture matching, you can apply it on whole palm image or on a cropped zone or finger of image, it's easy to use in opencv, a lot of tutorials with codes are available for this method. I recommend you to read this paper talking about Invariant Texture Classification
with Local Binary Patterns. here is a good tutorial
Haralick Texture: I've read that it works perfectly when a set of features quantifies the entire image (Global Feature Descriptors). it's not implemented in opencv but easy to be implemented, check this useful tutorial
Training Models: I've already suggested a SVM classifier, to be coupled with some descriptor, that can works perfectly.
Opencv has an interesting FaceRecognizer class for face recognition, it could be an interesting idea to use it replacing the face images by the palm ones, (do resizing and rotation to get an unique pose of palm), this class has three methods can be used, one of them is Local Binary Patterns Histograms, which is recommended for texture recognition. and why not to try the other models (Eigenfaces and Fisherfaces ) , check this tutorial
well if you go for a MacGyver way you can notice that the left hand has bones sticking out in a certain direction, while the right hand has all finger lines and a few lines in the hand palms.
These lines are always sort of the same, so you could try to detect them with opencv edge detection or hough lines. Due to the dark color of the lines, you might even be able to threshold them out of it. Then gather the information from those lines, like angles, regressions, see which features you can collect and train a simple decision tree.
That was assuming you do not have enough data, if you have then you go into deeplearning, just take a basic inceptionV3 model and retrain the last dense layer to classify between two classes with a softmax, or to predict the probablity if the hand being up/down with sigmoid. Check this link, Tensorflow got your back on the training of this one, pure already ready code to execute.
Questions? Ask away
Take a look at what leap frog has done with the oculus rift. I'm not sure what they're using internally to segment hand poses, but there is another paper that produces hand poses effectively. If you have a stereo camera setup, you can use this paper's methods: https://arxiv.org/pdf/1610.07214.pdf.
The only promising solutions I've seen for mono camera train on large datasets.
use Haar-Cascade classifier,
you can get the classifier model file then use it here.
Just search for 'Haarcascade detection of Palm in Google' or use below code.
import cv2
cam=cv2.VideoCapture(0)
ccfr2=cv2.CascadeClassifier('haar-cascade-files-master/palm.xml')
while True:
retval,image=cam.read()
grey=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
palm=ccfr2.detectMultiScale(grey,scaleFactor=1.05,minNeighbors=3)
for x,y,w,h in palm:
image=cv2.rectangle(image,(x,y),(x+w,y+h),(256,256,256),2)
cv2.imshow("Window",image)
if cv2.waitKey(1) & 0xFF==ord('q'):
cv2.destroyAllWindows()
break
del(cam)
Best of Luck for your experience using HaarCascade.
I had asked this on photo stackexchange but thought it might be relevant here as well, since I want to implement this programatically in my implementation.
I am trying to implement a blur detection algorithm for my imaging pipeline. The blur that I want to detect is both -
1) Camera Shake: Pictures captured using hand which moves/shakes when shutter speed is less.
2) Lens focussing errors - (Depth of Field) issues, like focussing on a incorrect object causing some blur.
3) Motion blur: Fast moving objects in the scene, captured using a not high enough shutter speed. E.g. A moving car a night might show a trail of its headlight/tail light in the image as a blur.
How can one detect this blur and quantify it in some way to make some decision based on that computed 'blur metric'?
What is the theory behind blur detection?
I am looking of good reading material using which I can implement some algorithm for this in C/Matlab.
thank you.
-AD.
Motion blur and camera shake are kind of the same thing when you think about the cause: relative motion of the camera and the object. You mention slow shutter speed -- it is a culprit in both cases.
Focus misses are subjective as they depend on the intent on the photographer. Without knowing what the photographer wanted to focus on, it's impossible to achieve this. And even if you do know what you wanted to focus on, it still wouldn't be trivial.
With that dose of realism aside, let me reassure you that blur detection is actually a very active research field, and there are already a few metrics that you can try out on your images. Here are some that I've used recently:
Edge width. Basically, perform edge detection on your image (using Canny or otherwise) and then measure the width of the edges. Blurry images will have wider edges that are more spread out. Sharper images will have thinner edges. Google for "A no-reference perceptual blur metric" by Marziliano -- it's a famous paper that describes this approach well enough for a full implementation. If you're dealing with motion blur, then the edges will be blurred (wide) in the direction of the motion.
Presence of fine detail. Have a look at my answer to this question (the edited part).
Frequency domain approaches. Taking the histogram of the DCT coefficients of the image (assuming you're working with JPEG) would give you an idea of how much fine detail the image has. This is how you grab the DCT coefficients from a JPEG file directly. If the count for the non-DC terms is low, it is likely that the image is blurry. This is the simplest way -- there are more sophisticated approaches in the frequency domain.
There are more, but I feel that that should be enough to get you started. If you require further info on either of those points, fire up Google Scholar and look around. In particular, check out the references of Marziliano's paper to get an idea about what has been tried in the past.
There is a great paper called : "analysis of focus measure operators for shape-from-focus" (https://www.researchgate.net/publication/234073157_Analysis_of_focus_measure_operators_in_shape-from-focus) , which does a comparison about 30 different techniques.
Out of all the different techniques, the "Laplacian" based methods seem to have the best performance. Most image processing programs like : MATLAB or OPENCV have already implemented this method . Below is an example using OpenCV : http://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
One important point to note here is that an image can have some blurry areas and some sharp areas. For example, if an image contains portrait photography, the image in the foreground is sharp whereas the background is blurry. In sports photography, the object in focus is sharp and the background usually has motion blur. One way to detect such a spatially varying blur in an image is to run a frequency domain analysis at every location in the image. One of the papers which addresses this topic is "Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes" (cvpr2017).
the authors look at multi resolution DCT coefficients at every pixel. These DCT coefficients are divided into low, medium, and high frequency bands, out of which only the high frequency coefficients are selected.
The DCT coefficients are then fused together and sorted to form the multiscale-fused and sorted high-frequency transform coefficients
A subset of these coefficients are selected. the number of selected coefficients is a tunable parameter which is application specific.
The selected subset of coefficients are then sent through a max pooling block to retain the highest activation within all the scales. This gives the blur map as the output, which is then sent through a post processing step to refine the map.
This blur map can be used to quantify the sharpness in various regions of the image. In order to get a single global metric to quantify the bluriness of the entire image, the mean of this blur map or the histogram of this blur map can be used
Here are some examples results on how the algorithm performs:
The sharp regions in the image have a high intensity in the blur_map, whereas blurry regions have a low intensity.
The github link to the project is: https://github.com/Utkarsh-Deshmukh/Spatially-Varying-Blur-Detection-python
The python implementation of this algorithm can be found on pypi which can easily be installed as shown below:
pip install blur_detector
A sample code snippet to generate the blur map is as follows:
import blur_detector
import cv2
if __name__ == '__main__':
img = cv2.imread('image_name', 0)
blur_map = blur_detector.detectBlur(img, downsampling_factor=4, num_scales=4, scale_start=2, num_iterations_RF_filter=3)
cv2.imshow('ori_img', img)
cv2.imshow('blur_map', blur_map)
cv2.waitKey(0)
For detecting blurry images, you can tweak the approach and add "Region of Interest estimation".
In this github link: https://github.com/Utkarsh-Deshmukh/Blurry-Image-Detector , I have used local entropy filters to estimate a region of interest. In this ROI, I then use DCT coefficients as feature extractors and train a simple multi-layer perceptron. On testing this approach on 20000 images in the "BSD-B" dataset (http://cg.postech.ac.kr/research/realblur/) I got an average accuracy of 94%
Just to add on the focussing errors, these may be detected by comparing the psf of the captured blurry images (wider) with reference ones (sharper). Deconvolution techniques may help correcting them but leaving artificial errors (shadows, rippling, ...). A light field camera can help refocusing to any depth planes since it captures the angular information besides the traditional spatial ones of the scene.
How many positive and how many negative samples will I need to recognize a pattern like one of the 3 stickers on this picture:
http://i.expansys.com/i/b/b199956.jpg
Note: that I'm talking about samples for creating a HaarCascade file in xml for OpenCV
Thx!
Antoine
Experimentation would be key. Hundreds would be a reasonable first guess for building proper rotational and translational invariances. Rotation would be 16 orientations (human perception limit, most template matching algorithms like these are sensitive to approx. +/- 10 degrees). Any other factors will increase sample requirements multiplicatively.
That said, I'm not sure Haar Cascades are an appropriate solution. They typically take advantage of the grey scale contrast to perform detection. The rotational and translation invariance is also built in via brute force.
By using Haar Cascades, you're throwing away a lot of the rich color information that you have.
Consider the following approach:
Some edge detection (Canny, Sobel, pick your poison)
Hough transform to solve for orientation of the rectangles
Normalize and crop the patterns.
Do color histogramming to discriminate between the three.
I had asked this on photo stackexchange but thought it might be relevant here as well, since I want to implement this programatically in my implementation.
I am trying to implement a blur detection algorithm for my imaging pipeline. The blur that I want to detect is both -
1) Camera Shake: Pictures captured using hand which moves/shakes when shutter speed is less.
2) Lens focussing errors - (Depth of Field) issues, like focussing on a incorrect object causing some blur.
3) Motion blur: Fast moving objects in the scene, captured using a not high enough shutter speed. E.g. A moving car a night might show a trail of its headlight/tail light in the image as a blur.
How can one detect this blur and quantify it in some way to make some decision based on that computed 'blur metric'?
What is the theory behind blur detection?
I am looking of good reading material using which I can implement some algorithm for this in C/Matlab.
thank you.
-AD.
Motion blur and camera shake are kind of the same thing when you think about the cause: relative motion of the camera and the object. You mention slow shutter speed -- it is a culprit in both cases.
Focus misses are subjective as they depend on the intent on the photographer. Without knowing what the photographer wanted to focus on, it's impossible to achieve this. And even if you do know what you wanted to focus on, it still wouldn't be trivial.
With that dose of realism aside, let me reassure you that blur detection is actually a very active research field, and there are already a few metrics that you can try out on your images. Here are some that I've used recently:
Edge width. Basically, perform edge detection on your image (using Canny or otherwise) and then measure the width of the edges. Blurry images will have wider edges that are more spread out. Sharper images will have thinner edges. Google for "A no-reference perceptual blur metric" by Marziliano -- it's a famous paper that describes this approach well enough for a full implementation. If you're dealing with motion blur, then the edges will be blurred (wide) in the direction of the motion.
Presence of fine detail. Have a look at my answer to this question (the edited part).
Frequency domain approaches. Taking the histogram of the DCT coefficients of the image (assuming you're working with JPEG) would give you an idea of how much fine detail the image has. This is how you grab the DCT coefficients from a JPEG file directly. If the count for the non-DC terms is low, it is likely that the image is blurry. This is the simplest way -- there are more sophisticated approaches in the frequency domain.
There are more, but I feel that that should be enough to get you started. If you require further info on either of those points, fire up Google Scholar and look around. In particular, check out the references of Marziliano's paper to get an idea about what has been tried in the past.
There is a great paper called : "analysis of focus measure operators for shape-from-focus" (https://www.researchgate.net/publication/234073157_Analysis_of_focus_measure_operators_in_shape-from-focus) , which does a comparison about 30 different techniques.
Out of all the different techniques, the "Laplacian" based methods seem to have the best performance. Most image processing programs like : MATLAB or OPENCV have already implemented this method . Below is an example using OpenCV : http://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
One important point to note here is that an image can have some blurry areas and some sharp areas. For example, if an image contains portrait photography, the image in the foreground is sharp whereas the background is blurry. In sports photography, the object in focus is sharp and the background usually has motion blur. One way to detect such a spatially varying blur in an image is to run a frequency domain analysis at every location in the image. One of the papers which addresses this topic is "Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes" (cvpr2017).
the authors look at multi resolution DCT coefficients at every pixel. These DCT coefficients are divided into low, medium, and high frequency bands, out of which only the high frequency coefficients are selected.
The DCT coefficients are then fused together and sorted to form the multiscale-fused and sorted high-frequency transform coefficients
A subset of these coefficients are selected. the number of selected coefficients is a tunable parameter which is application specific.
The selected subset of coefficients are then sent through a max pooling block to retain the highest activation within all the scales. This gives the blur map as the output, which is then sent through a post processing step to refine the map.
This blur map can be used to quantify the sharpness in various regions of the image. In order to get a single global metric to quantify the bluriness of the entire image, the mean of this blur map or the histogram of this blur map can be used
Here are some examples results on how the algorithm performs:
The sharp regions in the image have a high intensity in the blur_map, whereas blurry regions have a low intensity.
The github link to the project is: https://github.com/Utkarsh-Deshmukh/Spatially-Varying-Blur-Detection-python
The python implementation of this algorithm can be found on pypi which can easily be installed as shown below:
pip install blur_detector
A sample code snippet to generate the blur map is as follows:
import blur_detector
import cv2
if __name__ == '__main__':
img = cv2.imread('image_name', 0)
blur_map = blur_detector.detectBlur(img, downsampling_factor=4, num_scales=4, scale_start=2, num_iterations_RF_filter=3)
cv2.imshow('ori_img', img)
cv2.imshow('blur_map', blur_map)
cv2.waitKey(0)
For detecting blurry images, you can tweak the approach and add "Region of Interest estimation".
In this github link: https://github.com/Utkarsh-Deshmukh/Blurry-Image-Detector , I have used local entropy filters to estimate a region of interest. In this ROI, I then use DCT coefficients as feature extractors and train a simple multi-layer perceptron. On testing this approach on 20000 images in the "BSD-B" dataset (http://cg.postech.ac.kr/research/realblur/) I got an average accuracy of 94%
Just to add on the focussing errors, these may be detected by comparing the psf of the captured blurry images (wider) with reference ones (sharper). Deconvolution techniques may help correcting them but leaving artificial errors (shadows, rippling, ...). A light field camera can help refocusing to any depth planes since it captures the angular information besides the traditional spatial ones of the scene.