Detecting location of music note dots in a sheet music image - image-processing

I want to start a project that uses a very basic form of optical music recognition.
For those who understand sheet music: Unlike other OMR projects, the only information which needs to be extracted is the order and pitch values of each note in a bar. Quarter notes, half notes and whole notes need to be distinguished. Shorter notes can acceptably be interpreted as quarter notes. Dots on notes can be ignored. Dynamics markings are not important
For everyone: Strictly speaking I need to find the locations of each of the following...
... in a sample image like this...
I have no experience in image processing so a basic, conceptual explanation of what technique or set of techniques are used to achieve this would be greatly appreciated.

I would do the following:
Extract the line locations using Hough transform. (You get the angle as well). Crop each group of lines (5 lines), and process individually.
For each group of lines, you know the angle of the lines, so you can get the locations of the vertical small lines that separate the bars. Search again in Hough space, but with specific angle. (The original + 90). Crop each bar and process individually.
For each bar, use template matching on the possible notes (Quarter, Half,etc..)

I did something similar to your work and trust me it is a complete mess.
Howeverr, for the pitch for each note you extract the head from the rest and calculate the baricentre and compare its position to the position of lines calculated with Hough transform as already said (assuming that the lines are already straight: if not i think you can use the Fourier Transform).
For the duration you need a classification algorithm.

Related

How can I transform an image to match a circular model in OpenCV

I'm trying to make a program that can take an image of a dartboard and read the score. So far I can get the position of each dart by comparing it to a model image as you can see here:
However this only works if the input image is practically the same. In this other case the board is slightly in a different perspective so I was thinking maybe I can transform the image to match the model image and then do the process that you can see above.
So my question is: How can I transform this last image to match the shape and pespective of the model dart board with OpenCV?
The dart board is basically planar. Thus, you can model the wanted transformation by a homography. Now you can perform a simple feature extraction and matching like here or if speed is not as important utilize an intensity based parametric alignment algorithm (more accurate).
However, as already mentioned in the comments, it will not be as simple afterwards. The dart flights will (depending on the distortion) most likely cover an area of your board which does not coincide with the actual score. Actually, even with a frontal view it is difficult to say.
I assume you will have to find the point on which the darts stick in your board. Furthermore, I think this will be easier with a view from a certain angle. Maybe, you can fit lines segments just in the area where you detected a difference beforehand.
I don't think comparing an image with the model that was captured using a different subject with a different angle is a good idea. There should be lots of small differences even after perfectly matching them geometrically - like shades, lighting, color differences, etc.
I would just capture an image every time the game begin (reference) and extract the features (straight lines seem good enough) and then after the game, capture an image, subtract the reference, and do blob analysis to find darts.

Recognition and counting of books from side using OpenCV

Just wish to receive some ideas on I can solve this problem.
For a clearer picture, here are examples of some of the image that we are looking at:
I have tried looking into thresholding it, like otsu, blobbing it, etc. However, I am still unable to segment out the books and count them properly. Hardcover is easy of course, as the cover clearly separates the books, but when it comes to softcover, I have not been able to successfully count the number of books.
Does anybody have any suggestions on what I can do? Any help will be greatly appreciated. Thanks.
I ran a sobel edge detector and used Hough transform to detect lines on the last image and it seemed to be working okay for me. You can then link the edges on the output of the sobel edge detector and then count the number of horizontal lines. Or, you can do the same on the output of the lines detected using Hough.
You can further narrow down the area of interest by converting the image into a binary image. The outputs of all of these operators can be seen in following figure ( I couldn't upload an image so had to host it here) http://www.pictureshoster.com/files/v34h8hvvv1no4x13ng6c.jpg
Refer to http://www.mathworks.com/help/images/analyzing-images.html#f11-12512 for some more useful examples on how to do edge, line and corner detection.
Hope this helps.
I think that #audiohead's recommendation is good but you should be careful when applying the Hough transform for images that will have the library's stamp as it might confuse it with another book (You can see that the letters form some break-lines that will be detected by sobel).
Consider to apply first an edge preserving smoothing algorithm such as a Bilateral Filter. When tuned correctly (setting of the Kernels) it can avoid these such of problems.
A Different Solution That Might Work (But can be slow)
Here is a different approach that is based on pixel marking strategy.
a) Based on some very dark threshold, mark all black pixels as visited.
b) While there are unvisited pixels: Pick the next unvisited pixel and apply a region-growing algorithm http://en.wikipedia.org/wiki/Region_growing while marking its pixels with a unique number. At this stage you will need to analyse the geometric shape that this region is forming. A good criteria to detecting a book is that the region is creating some form of a rectangle where width >> height. This will detect a book and mark all its pixels to the unique number.
Once there are no more unvisited pixels, the number of unique numbers is the number of books you will have + For each pixel on your image you will now to which book does it belongs.
Do you have to keep the books this way? If you can change the books to face back side to the camera then I think you can get more information about the different colors used by different books.The lines by Hough transform or edge detection will be more prominent this way.
There exist more sophisticated methods which are much better in contour detection and segmentation, you can have a look at them here, however it is quite slow, http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
Once you get the ultrametric contour map, you can perform some computation on them to count the number of books
I would try a completely different approach; with paperbacks, the covers are medium-dark lines whilst the rest of the (assuming white pages) are fairly white and "bloomed", so I'd try to thicken up the dark edges to make them easy to detect, then that would give the edges akin to working with hardbacks which you say you've done.
I'd try something like an erosion to thicken up the edges. This would be a nice, fast operation.

Extract coordinates from image file

How to get an array of coordinates of a (drawn) line in image? Coordinates should be relative to image borders. Input: *.img . Output array of coordinates (with fixed step). Any 3rd party software to do this? For example there is high contrast difference - white background and color black line; or red and green etc.
Example:
Oh, you mean non-straight lines. You need to define a "line". Intuitively, you might mean a connected area of the image with a high aspect ratio between the length of its medial axis and the distance between medial axis and edges (ie relatively long and narrow, even if it winds around). Possible approach:
Threshold or select by color. Perhaps select by color based on a histogram of colors, or posterize as described here: Adobe Photoshop-style posterization and OpenCV, then call scipy.ndimage.measurements.label()
For each area above, skeletonize. Helpful tutorial: "Skeletonization using OpenCV-Python". However, you will likely need the distance to the edges as well, so use skimage.morphology.medial_axis(..., return_distance=True)
Do some kind of cleanup/filtering on the skeleton to remove short branches, etc. Thinking about your particular use, and assuming your lines don't loop around, you can just find the longest single path in the skeleton. This is where you can also decide if a shape is a "line" or not, based on how long the longest path in its skeleton is, relative to distance to the edges. Not sure how to best do that in opencv, but "Analyze Skeleton" in Fiji/ImageJ will let you filter by branch length.
What is left is the most elongated medial axis of the original "line" shape. You can resample that to some step that you prefer, or fit it with a spline, etc.
Due to the nature of what you want to do, it is hard to come up with a sample code that will work on a range of images. This is likely to require some careful tuning. I recommend using a small set of images (corpus), running any version of your algo on them and checking the results manually until it is pretty good, then trying it on a large corpus.
EDIT: Original answer, only works for straight lines:
You probably want to use the Hough transform (OpenCV tutorial).
Python sample code: Horizontal Line detection with OpenCV
EDIT: Related question with sample code to skeletonize: How can I get a full medial-axis line with its perpendicular lines crossing it?

square detection, image processing

I am looking for an efficient way to detect the small boxes around the numbers (see images)?
I already tried to use hough transformation with no success. Any ideas? I need some hints! I am using opencv...
For inspiration, you can have a look at the
Matlab video sudoku solver demo and explanation
Sudoku Grab, an Iphone App, whose author explains the computer vision part on his blog
Alternatively, if you are always hunting for the same grid you could deploy something like this:
Make a perfect artificial template of the grid and detect or save all coordinates from all corners.
In the target image, do the same thing, for example with Harris points. Be creative, you might also be able to use the distinct triangles that can be found in your images.
Using the coordinates from the template and the found harris points, determine the affine transformation x = Ax' between the template and the target image. That transformation can then be used to map the template grid onto the target image. At the very least this will give you some prior information to help guide further segmentation.
The gist of the idea and examples of the estimation of affine matrix A can be found on the site of Zissermans book Multiple View Geometry in Computer Vision and Peter Kovesi
I'd start by trying to detect the rectangular boundary of the overall sheet, then applying a perspective transform to make it truly rectangular. Crop that portion of the image out. If possible, then try to make the alternating white and grey sub-rectangles have an equal background brightness - maybe try adaptive histogram equalization.
Then the Hough transform might perform better. Alternatively, you could then take an approach that's broadly similar to this demonstration by Robert Bemis on MATLAB Central (it's analysing a DNA microarray image rather than Lotto cards, but it's essentially finding bounding boxes of items arranged in a grid). At a high level, the approach is to calculate the autocorrelation along columns and rows of pixels to detect the periodicity of the items in the grid, and use that to impose a bounding box on each item.
Sorry the above advice is mostly MATLAB-based; I'm afraid I'm not an opencv user, but hopefully it will give you some ideas at least.

Analysis and transformation of the image on the basis of this analysis for better OCR results

I have an OCR project, but it works good only with images in which the text is fairly straight, not upside down. (not rotated text)
So I want to make OCR to be able to recognize any kind of images, even upside down. But I don't know what are approaches to solve this problem.
I need something like analysis of lines of letters, but even then I can't identify if line is upside down or not.
If the images you are performing OCR on are from a magazine or book where there is lots of text on multiple lines, I suggest trying to find the rotation of the page.
Probably the simplest way to do this is applying the hough transform for lines. Since the empty space between each line of text should be a a broad white line this could work without any preprocessing of the image. Otherwise try blurring it or using the "close" morphological operation to make the lines of text into opaque blocks.
Once you find the lines in the image with the hough transform you should just extract the principal angle of rotation (like the mean angle of all lines) and rotate it back.
My answer to you will be very high level as this is not simple, as you can imagine. You probably are doing some sort of image segmentation, where you segment each character of your text. But in order to recognize the characters, even when they are rotated, you need to use a feature vector with rotational invariant characteristics. To do it some people are using
Zernike Moment
Neocognitron neural network - widely used for handwriting
I don't think it's a simple task
Not sure if you are creating an OCR engine or using one. Most commercial OCR engines can detect that a page is upside-down (or 90 degree rotated) and auto-rotate it. For example, my company's GlyphReader OCR Engine can do that.
One simple solution is to take a portion of your image and run it through the engine at the four angles until you get back a good amount of recognized text. You can use a dictionary to see if what you are getting back is words and confidence levels to see how sure the engine is of its recognition.
If your engine can report confidence levels, and they are reporting consistently under some threshold, then you should stop and see if the document is rotated.
For 90 and 270, a hough transform will tell you whether the lines in the image are horizontal or vertical. It can also tell you if they are just slightly rotated off the horizontal so that you can correct that as well.

Resources