How to program FPGA using F# - f#

I usually use F# for writing numerical algorithms. Functional programming constructs in F# helps to express algorithms in a very natural way. I often end up with a succinct and understandable implementation, and may be able to parallelize it quite fast if there is a chance of parallelism.
I wonder there is a way to compile F# programs down to FPGA. In this way, I can still use F# to avoid boilerplate codes in FPGA programming, and make use of high performance computing in FPGA. Is this possible to do so? If yes, could you provide some hints for me to start with?

I've read about (but never used) Avalda's F# to FPGA conversion, but their site is currently returning a completely blank page. I don't know if that's just temporary of if it means they've gone belly-up.

F# should be ideal for this task because it is derived from the ML family of languages that were bred for metaprogramming. However, I am not aware of any work in this area (although I have had the idea of working on it myself).
I would focus on writing a compiler in F# that compiled a DSL to an FPGA, rather than trying to compile general F# code.

Here's a list for HLS tools using C. My experience with one of them in 2006 was not favourable but I expect them to be much better today.
Regarding F#, I doubt this will exist any time soon.

Related

Using of F# in a game engine

I'm currently creating a roguelike game and have already started coding in C# but have not coded much (<1000 lines) so far...
Now again, I have had a look at F# and this language seems to be very cool...I'm considering now using F# for the game engine, which, I think, will be 90% of the codeline (A roguelike has a very 'lean' ASCII-UI).
Do you think, F# would be better suited than C# concerning writing coding for procedural content generation, complex AI and game logic? Do you see any traps (apart from that I have to master the language first, of course)?
I've some concerns if F# is not just a research project and will be abandoned by Microsoft or are there statements that it is now a major .NET language?
Thanks for your input.
I don't see any traps.
F# fully supports .NET and even though it's mainly a functional languague you can implement the OO paradigma without a problem.
Also interop with C# is very well possible, so you could even go back to C# without giving up your F# code.
And as for it's future :
It's now part of VS as a stable language, so it's going very much in the direction of being one of the main .NET languages together with VB and C#.
F# is now a full MS product, and functional programming will be increasingly important in the future, so I wouldn't worry about MS losing interest in it any time soon.
F# should be a great choice here. I suspect you'll have some interesting state machines and I've found F# to be particularly good for that.

Should I use F# to analyse Graphs

We have a program which perform graph analysis (namely Maximum-flow problem) on several graphs.
There is also the opportunity to process these in parallel.
There is already a large C# Code base, but we are intending to rewrite a large portion of this. Would it be better to do this type of operation in F#, as opposed to say C#?
Thanks, Pete
I think that this depends largely on the composition of your team - how well do you know F#?
I feel like I am able to develop almost anything more quickly in F# than C#. In particular, highly algorithmic programs are often more concise and readable when expressed in F# thanks to type inference. However, if you don't have much experience with F# there is a significant learning curve, which means that you may be better off sticking to C# if you already know that language well.
C#'s support for doing operations in parallel is roughly equivalent to F#'s, particularly if your task doesn't require accessing any shared mutable state (which seems to be the case for your task). If I understand your problem correctly, you'd just like to run the same operation on multiple graphs at the same time, which ought to be quite easy in either language. If you were trying to parallelize the max-flow algorithm itself, then F# might be a bit easier due to its stronger support for immutable data types. Where F# really beats C# is in doing asynchronous operations, but that seems less relevant here.

An Erlang written in Ada?

Another thread had this quote
Erlang VM BEAM and HiPE is written mostly in C.
Linked-in drivers are written mostly in C. (They are plugged to VM
and serves communication with outside
world.)
I've read some opinions that Ada's strong typing, modularity, run-time checking, parallel processing etc. etc. are better than that of C.
Would Erlang compiled using Ada be noticably better or worse than the Erlang made with C?
Just a hypothetical Q.
Normally I'd throw a bunch of weasel-words at you on a topic like this, but it turns out this exact question has been studied (it's a .doc file. Sorry).
Rational had a compiler with a large amount of code in both languages, and a large amount of data compiled over several years on bug rates, fix times, etc. Out of curiosity, one of their engineers crunched the numbers.
The answer was "Development Costs of C Exceed Those of Ada". If you read past the summary title, you'd see that they figured writing the same code in Ada cost them about half what writing it in C cost.
I know that everyone reading this is anxious to poke holes in that conclusion. I was too. But they looked at darn near every angle I could think of in the report.
"Better" in what way? Better as in faster? Better as in less bugs? Better as in more portable? Better as in more readable? Better as in more extensible?
For any suitable definition of "better" arguments can be made either way. However, it is just about sacred writ that no compiled language is more portable than C. Thus, if one of your goals is to make your application highly portable, C is an excellent choice.
More people understand C than Ada. Writing erlang extensions might be much harder if it was written in Ada, simply because fewer people are conversant with the language.
C code can be highly performant, but I am aware of no comparisons between C and Ada w/r to compiler optimizations.
Ada's type checking might be useful, or it could be a real problem. One presumes that a VM does it's own type checking on the pieces that matter to it. The overhead of RTTC in Ada could impose a completely unnecessary burden.
Perhaps, but what language was your Ada compiler written in? Ada? What about the compiler that write your FIRST Ada compiler?
At some point when you are building software, formal semantics and software processes are much more important than what language something was coded in.

Is it possible that F# will be optimized more than other .Net languages in the future?

Is it possible that Microsoft will be able to make F# programs, either at VM execution time, or more likely at compile time, detect that a program was built with a functional language and automatically parallelize it better?
Right now I believe there is no such effort to try and execute a program that was built as single threaded program as a multi threaded program automatically.
That is to say, the developer would code a single threaded program. And the compiler would spit out a compiled program that is multi-threaded complete with mutexes and synchronization where needed.
Would these optimizations be visible in task manager in the process thread count, or would it be lower level than that?
I think this is unlikely in the near future. And if it does happen, I think it would be more likely at the IL level (assembly rewriting) rather than language level (e.g. something specific to F#/compiler). It's an interesting question, and I expect that some fine minds have been looking at this and will continue to look at this for a while, but in the near-term, I think the focus will be on making it easier for humans to direct the threading/parallelization of programs, rather than just having it all happen as if by magic.
(Language features like F# async workflows, and libraries like the task-parallel library and others, are good examples of near-term progress here; they can do most of the heavy lifting for you, especially when your program is more declarative than imperative, but they still require the programmer to opt-in, do analysis for correctness/meaningfulness, and probably make slight alterations to the structure of the code to make it all work.)
Anyway, that's all speculation; who can say what the future will bring? I look forward to finding out (and hopefully making some of it happen). :)
Being that F# is derived from Ocaml and Ocaml compilers can optimize your programs far better than other compilers, it probably could be done.
I don't believe it is possible to autovectorize code in a generally-useful way and the functional programming facet of F# is essentially irrelevant in this context.
The hardest problem is not detecting when you can perform subcomputations in parallel, it is determining when that will not degrade performance, i.e. when the subtasks will take sufficiently long to compute that it is worth taking the performance hit of a parallel spawn.
We have researched this in detail in the context of scientific computing and we have adopted a hybrid approach in our F# for Numerics library. Our parallel algorithms, built upon Microsoft's Task Parallel Library, require an additional parameter that is a function giving the estimated computational complexity of a subtask. This allows our implementation to avoid excessive subdivision and ensure optimal performance. Moreover, this solution is ideal for the F# programming language because the function parameter describing the complexity is typically an anonymous first-class function.
Cheers,
Jon Harrop.
I think the question misses the point of the .NET architecture-- F#, C# and VB (etc.) all get compiled to IL, which then gets compiled to machine code via the JIT compiler. The fact that a program was written in a functional language isn't relevant-- if there are optimizations (like tail recursion, etc.) available to the JIT compiler from the IL, the compiler should take advantage of it.
Naturally, this doesn't mean that writing functional code is irrelevant-- obviously, there are ways to write IL which will parallelize better-- but many of these techniques could be used in any .NET language.
So, there's no need to flag the IL as coming from F# in order to examine it for potential parallelism, nor would such a thing be desirable.
There's active research for autoparallelization and auto vectorization for a variety of languages. And one could hope (since I really like F#) that they would concive a way to determine if a "pure" side-effect free subset was used and then parallelize that.
Also since Simon Peyton-Jones the father of Haskell is working at Microsoft I have a hard time not beliving there's some fantastic stuff comming.
It's possible but unlikely. Microsoft spends most of it's time supporting and implementing features requested by their biggest clients. That usually means C#, VB.Net, and C++ (not necessarily in that order). F# doesn't seem like it's high on the list of priorities.
Microsoft is currently developing 2 avenues for parallelisation of code: PLINQ (Pararllel Linq, which owes much to functional languages) and the Task Parallel Library (TPL) which was originally part of Robotics Studio. A beta of PLINQ is available here.
I would put my money on PLINQ becoming the norm for auto-parallelisation of .NET code.

If you already know LISP, why would you also want to learn F#?

What is the added value for learning F# when you are already familiar with LISP?
Static typing (with type inference)
Algebraic data types
Pattern matching
Extensible pattern matching with active patterns.
Currying (with a nice syntax)
Monadic programming, called 'workflows', provides a nice way to do asynchronous programming.
A lot of these are relatively recent developments in the programming language world. This is something you'll see in F# that you won't in Lisp, especially Common Lisp, because the F# standard is still under development. As a result, you'll find there is a quite a bit to learn. Of course things like ADTs, pattern matching, monads and currying can be built as a library in Lisp, but it's nicer to learn how to use them in a language where they are conveniently built-in.
The biggest advantage of learning F# for real-world use is its integration with .NET.
Comparing Lisp directly to F# isn't really fair, because at the end of the day with enough time you could write the same app in either language.
However, you should learn F# for the same reasons that a C# or Java developer should learn it - because it allows functional programming on the .NET platform. I'm not 100% familiar with Lisp, but I assume it has some of the same problems as OCaml in that there isn't stellar library support. How do you do Database access in Lisp? What about high-performance graphics?
If you want to learn more about 'Why .NET', check out this SO question.
If you knew F# and Lisp, you'd find this a rather strange question to ask.
As others have pointed out, Lisp is dynamically typed. More importantly, the unique feature of Lisp is that it's homoiconic: Lisp code is a fundamental Lisp data type (a list). The macro system takes advantage of that by letting you write code which executes at compile-time and modifies other code.
F# has nothing like this - it's a statically typed language which borrows a lot of ideas from ML and Haskell, and runs it on .NET
What you are asking is akin to "Why do I need to learn to use a spoon if I know how to use a fork?"
Given that LISP is dynamically typed and F# is statically typed, I find such comparisons strange.
If I were switching from Lisp to F#, it would be solely because I had a task on my hands that hugely benefitted from some .NET-only library.
But I don't, so I'm not.
Money. F# code is already more valuable than Lisp code and this gap will widen very rapidly as F# sees widespread adoption.
In other words, you have a much better chance of earning a stable income using F# than using Lisp.
Cheers,
Jon Harrop.
F# is a very different language compared to most Lisp dialects. So F# gives you a very different angle of programming - an angle that you won't learn from Lisp. Most Lisp dialects are best used for incremental, interactive development of symbolic software. At the same time most Lisp dialects are not Functional Programming Languages, but more like multi-paradigm languages - with different dialects placing different weight on supporting FPL features (free of side effects, immutable data structures, algebraic data types, ...). Thus most Lisp dialects either lack static typing or don't put much emphasis on it.
So, if you know some Lisp dialect, then learning F# can make a lot of sense. Just don't think that much of your Lisp knowledge applies to F#, since F# is a very different language. As much as an imperative programming used to C or Java needs to unlearn some ideas when learning Lisp, one also needs to unlearn Lisp habits (no types, side effects, macros, ...) when using F#. F# is also driven by Microsoft and taking advantage of the .net framework.
F# has the benefit that .NET development (in general) is very widely adopted, easily available, and more mass market.
If you want to code F#, you can get Visual Studio, which many developers will already have...as opposed to getting the LISP environment up and running.
Additionally, existing .NET developers are much more likely to look at F# than LISP, if that means anything to you.
(This is coming from a .NET developer who coded, and loved, LISP, while in college).
I'm not sure if you would? If you find F# interesting that would be a reason. If you work requires it, it would be a reason. If you think it would make you more productive or bring you added value over your current knowledge, that would be a reason.
But if you don't find F# interesting, your work doesn't require it and you don't think it would make you more productive or bring you added value, then why would you?
If the question on the other hand is what F# gives that lisp don't, then type inference, pattern matching and integration with the rest of the .NET framework should be considered.
I know this thread is old but since I stumbled on this one I just wanted to comment on my reasons. I am learning F# simply for professional opportunities since .NET carries a lot of weight in a category of companies that dominate my field. The functional paradigm has been growing in use among more quantitatively and data oriented companies and I'd like to be one of the early comers to this trend. Currently there doesn't an exist a strong functional language that fully and safely integrates with the .NET library. I actually attempted to port some .NET from Lisp code and it's really a pain b/c the FFI only supports C primitives and .NET interoperability requires an 'interface' construct and even though I know how to do this in C it's really a huge pain. It would be really, really, good if Lisp went the extra mile in it's next standard and required a c++ class (including virtual functions w/ vtables), and a C# style interface type in it's FFI. Maybe even throw in a Java interface style type too. This would allow complete interoperability with the .NET library and make Lisp a strong contender as a large-scale language. However with that said, coming from a Lisp background made learning F# rather easy. And I like how F# has gone the extra mile to provide types that you would commonly see it quantitative type work. I believe F# was created with mathematical work in mind and that in itself has value over Lisp.
One way to look at this (the original question) is to match up the language (and associated tools and platforms) to the immediate task. If the task requires an overwhelming percentage of .NET code, and it would require less shoe-horning in one language than another to meet the task head-on, then take the path of least resistance (F#). If you don't need .NET capabilities, and you're comfortable working with LISP and there's no arm-bending to move away from it, keep using it.
Not really much different from comparing a hammer with a wrench. Pick the tool that fits the job most effectively. Trying to pick a tool that's objectively "best" is nonsense. And in any case, in 20 years, all of the currently "hot" languages might be outdated anyway.

Resources