OpenRasta: Uri seems to be irrelevant for handler selection - openrasta

When registering two handlers for the same type, but with different URIs, the handler selection algorithm doesn't seem to check the uri when it determines which handler to use.
If you run the program below, you'll notice that only HandlerOne will be invoked (twice). It does not matter if I call for "/one" or "/two", the latter supposed to be handled by HandlerTwo.
Am I doing something wrong or is this something to be fixed in OpenRasta? (I'm using 2.0.3.0 btw)
class Program
{
static void Main(string[] args)
{
using (InMemoryHost host = new InMemoryHost(new Configuration()))
{
host.ProcessRequest(new InMemoryRequest
{
HttpMethod = "GET",
Uri = new Uri("http://x/one")
});
host.ProcessRequest(new InMemoryRequest
{
HttpMethod = "GET",
Uri = new Uri("http://x/two")
});
}
}
}
class Configuration : IConfigurationSource
{
public void Configure()
{
using (OpenRastaConfiguration.Manual)
{
ResourceSpace.Has.ResourcesOfType(typeof(object))
.AtUri("/one").HandledBy(typeof(HandlerOne));
ResourceSpace.Has.ResourcesOfType(typeof(object))
.AtUri("/two").HandledBy(typeof(HandlerTwo));
}
}
}
class HandlerOne
{
public object Get() { return "returned from HandlerOne.Get"; }
}
class HandlerTwo
{
public object Get() { return "returned from HandlerTwo.Get"; }
}
Update
I have a feeling that I could accomplish what I want similar using UriNameHandlerMethodSelector as described on http://trac.caffeine-it.com/openrasta/wiki/Doc/Handlers/MethodSelection, but then I'd have to annotate each handler methods and also do AtUri().Named(), which looks like boilerplate to me and I'd like to avoid that. Isn't AtUri(X).HandledBy(Y) making the connection between X and Y clear?

Eugene,
You should never have multiple registrations like that on the same resource type, and you probably never need to have ResourcesOfType<object> ever associated with URIs, that'll completely screw with the resolution algorithms used in OpenRasta.
If you're mapping two different things, create two resource classes. Handlers and URIs are only associate by resource class, and if you fail at designing your resources OpenRasta will not be able to match the two, and this is by design.
If you want to persist down that route, and I really don't think you should, then you can register various URIs to have a name, and hint on each of your methods that the name ought to be handled using HttpOperation(ForUriName=blah). That piece of functionality is only there for those very, very rare scenarios where you do need to opt-out of the automatic method resolution.
Finally, as OpenRasta is a compsable framework, you shouldnt have to go and hack around existing classes, you ought to plug yourself into the framework to ensure you override the components you don't want and replace them by things you code yourself. In this case, you could simply write a contributor that replaces the handler selection with your own moel if you don't like the defaults and want an MVC-style selection system. Alternatively, if you want certain methods to be selected rather than others, you can remove the existing operation selectors and replace them (or complement them with) your own. That way you will rely on published APIs to extend OpenRasta and your code won't be broken in the future. I can't give that guarantee if you forked and hacked existing code.

As Seb explained, when you register multiple handlers with the same resource type OpenRasta treats the handlers as one large concatenated class. It therefore guesses (best way to describe it) which potential GET (or other HTTP verb) method to execute, which ever it thinks is most appropriate. This isn't going to be acceptable from the developers prospective and must be resolved.
I have in my use of OpenRasta needed to be able to register the same resource type with multiple handlers. When retrieving data from a well normalised relational database you are bound to get the same type response from multiple requests. This happens when creating multiple queries (in Linq) to retrieve data from either side of the one-to-many relation, which of course is important to the whole structure of the database.
Taking advice from Seb, and hoping I've implemented his suggestion correctly, I have taken the database model class, and built a derived class from it in a resources namespace for each instance of when a duplicating resource type might have been introduced.
ResourceSpace.Has.ResourcesOfType<IList<Client>>()
.AtUri("/clients").And
.AtUri("/client/{clientid}").HandledBy<ClientsHandler>().AsJsonDataContract();
ResourceSpace.Has.ResourcesOfType<IList<AgencyClient>>()
.AtUri("/agencyclients").And
.AtUri("/agencyclients/{agencyid}").HandledBy<AgencyClientsHandler>().AsJsonDataContract();
Client is my Model class which I have then derived AgencyClient from.
namespace ProductName.Resources
{
public class AgencyClient: Client { }
}
You don't even need to cast the base class received from your Linq-SQL data access layer into your derived class. The Linq cast method isn't intended for that kind of thing anyway, and although this code will compile it is WRONG and you will receive a runtime exception 'LINQ to Entities only supports casting Entity Data Model primitive types.'
Context.Set<Client>().Cast<AgencyClient>().ToList(); //will receive a runtime error
More conventional casts like (AgencyClient) won't work as conversion to a SubClass isn't easily possible in C#. Convert base class to derived class
Using the AS operator will again compile and will even run, but will give a null value in the returned lists and therefore won't retrieve the data intended.
Context.Set<Client>().ToList() as IEnumerable<AgencyClient>; //will compile and run but will return null
I still don't understand how OpenRasta handles the differing return class from the handler to the ResourceType but it does, so let's take advantage of it. Perhaps Seb might be able to elaborate?
OpenRasta therefore treats these classes separately and the right handler methods are executed for the URIs.

I patched OpenRasta to make it work. These are the files I touched:
OpenRasta/Configuration/MetaModel/Handlers/HandlerMetaModelHandler.cs
OpenRasta/Handlers/HandlerRepository.cs
OpenRasta/Handlers/IHandlerRepository.cs
OpenRasta/Pipeline/Contributors/HandlerResolverContributor.cs
The main change is that now the handler repository gets the registered URIs in the initializing call to AddResourceHandler, so when GetHandlerTypesFor is called later on during handler selection, it can also check the URI. Interface-wise, I changed this:
public interface IHandlerRepository
{
void AddResourceHandler(object resourceKey, IType handlerType);
IEnumerable<IType> GetHandlerTypesFor(object resourceKey);
to that:
public interface IHandlerRepository
{
void AddResourceHandler(object resourceKey, IList<UriModel> resourceUris, IType handlerType);
IEnumerable<IType> GetHandlerTypesFor(object resourceKey, UriRegistration selectedResource);
I'll omit the implementation for brevity.
This change also means that OpenRasta won't waste time on further checking of handlers (their method signatures etc.) that are not relevant to the request at hand.
I'd still like to get other opinions on this issue, if possible. Maybe I just missed something.

Related

Correct client-server framework architecture approach (different server versions)

I am trying to design and implement a framework to communicate with server (it's an iOS framework written in Swift). The challenge I am facing is the architecture - there are two ways of communicating with the server and I have to implement both (different versions). I really want to achieve having a stateless client, with methods such as: Client.authenticate() or Client.downloadFile(). The problem is when having two implementations I would end up with methods in my Client class like this one:
public class func authenticate(state: state) {
if (state.type == 1) {
Client1.authenticate(state)
} else {
Client2.authenticate(state)
}
}
Repeated for every single method...
I wanted to initially keep the client like this - stateless and static and have only state objects that hold the actual state as there could be many connections to the server with various states. By that I wanted to avoid having the client as an object and both holding the state and performing the calls to the server. The problem is that this approach is just...dirty I guess. What would be a more DRY, readable and sustainable way of doing this?
I don't fully understand your intention without more code samples, but the patterns I will present to you will surely clear things up for you.
If your Client class always uses either Client1 or Client2 (or more specifically, if your every client object state variable doesn't change through it's instances lifetime) you should use Dependency Injection.
You create a procol (Let's call it RemoteClient with authenticate method (and every other method that the server client should implement) and make Client1 and Client2 conform to that protocol.
Now you make your Client class to accept a RemoteClient in it's constructor.
Now whatever creates the Client object, it can decide what to inject into the constructor: the Client1 concrete class object, or Client2.
There's a lot of articles about Dependency Injection so I won't cover it in much detail.
Example article
You can also use the Strategy design pattern, which is very similiar but kind of different in intent:
Strategy design pattern
Difference between DI and Strategy
EDIT
After you've clarified what you want to do in comments below:
In that case, you can use reflection/metadata and use dictionary/map to invoke the client you want.
(pseudocode)
enum ServerType
{
client1,
client2
}
Dictionary* serversDictionary; // key = ServerType , value = object of protocol type RemoteLocation
static init
{
serversDictionary[client1] = Client1.self; // using swift class metadata
serversDictionary[client2] = Client2.self; // using swift class metadata
}
static authenticate(ServerType type) {
let locationToSendAuthTo = serversDictionary[type];
locationToSendAuthTo.authenticate(type);
}
I'm not sure if Swift works that way because I've just started using it. I'm not sure if you can call a static method on a class type. The docs are pretty thin on that.
More here:
Swift class introspection & generics

Why does one use dependency injection?

I'm trying to understand dependency injections (DI), and once again I failed. It just seems silly. My code is never a mess; I hardly write virtual functions and interfaces (although I do once in a blue moon) and all my configuration is magically serialized into a class using json.net (sometimes using an XML serializer).
I don't quite understand what problem it solves. It looks like a way to say: "hi. When you run into this function, return an object that is of this type and uses these parameters/data."
But... why would I ever use that? Note I have never needed to use object as well, but I understand what that is for.
What are some real situations in either building a website or desktop application where one would use DI? I can come up with cases easily for why someone may want to use interfaces/virtual functions in a game, but it's extremely rare (rare enough that I can't remember a single instance) to use that in non-game code.
First, I want to explain an assumption that I make for this answer. It is not always true, but quite often:
Interfaces are adjectives; classes are nouns.
(Actually, there are interfaces that are nouns as well, but I want to generalize here.)
So, e.g. an interface may be something such as IDisposable, IEnumerable or IPrintable. A class is an actual implementation of one or more of these interfaces: List or Map may both be implementations of IEnumerable.
To get the point: Often your classes depend on each other. E.g. you could have a Database class which accesses your database (hah, surprise! ;-)), but you also want this class to do logging about accessing the database. Suppose you have another class Logger, then Database has a dependency to Logger.
So far, so good.
You can model this dependency inside your Database class with the following line:
var logger = new Logger();
and everything is fine. It is fine up to the day when you realize that you need a bunch of loggers: Sometimes you want to log to the console, sometimes to the file system, sometimes using TCP/IP and a remote logging server, and so on ...
And of course you do NOT want to change all your code (meanwhile you have gazillions of it) and replace all lines
var logger = new Logger();
by:
var logger = new TcpLogger();
First, this is no fun. Second, this is error-prone. Third, this is stupid, repetitive work for a trained monkey. So what do you do?
Obviously it's a quite good idea to introduce an interface ICanLog (or similar) that is implemented by all the various loggers. So step 1 in your code is that you do:
ICanLog logger = new Logger();
Now the type inference doesn't change type any more, you always have one single interface to develop against. The next step is that you do not want to have new Logger() over and over again. So you put the reliability to create new instances to a single, central factory class, and you get code such as:
ICanLog logger = LoggerFactory.Create();
The factory itself decides what kind of logger to create. Your code doesn't care any longer, and if you want to change the type of logger being used, you change it once: Inside the factory.
Now, of course, you can generalize this factory, and make it work for any type:
ICanLog logger = TypeFactory.Create<ICanLog>();
Somewhere this TypeFactory needs configuration data which actual class to instantiate when a specific interface type is requested, so you need a mapping. Of course you can do this mapping inside your code, but then a type change means recompiling. But you could also put this mapping inside an XML file, e.g.. This allows you to change the actually used class even after compile time (!), that means dynamically, without recompiling!
To give you a useful example for this: Think of a software that does not log normally, but when your customer calls and asks for help because he has a problem, all you send to him is an updated XML config file, and now he has logging enabled, and your support can use the log files to help your customer.
And now, when you replace names a little bit, you end up with a simple implementation of a Service Locator, which is one of two patterns for Inversion of Control (since you invert control over who decides what exact class to instantiate).
All in all this reduces dependencies in your code, but now all your code has a dependency to the central, single service locator.
Dependency injection is now the next step in this line: Just get rid of this single dependency to the service locator: Instead of various classes asking the service locator for an implementation for a specific interface, you - once again - revert control over who instantiates what.
With dependency injection, your Database class now has a constructor that requires a parameter of type ICanLog:
public Database(ICanLog logger) { ... }
Now your database always has a logger to use, but it does not know any more where this logger comes from.
And this is where a DI framework comes into play: You configure your mappings once again, and then ask your DI framework to instantiate your application for you. As the Application class requires an ICanPersistData implementation, an instance of Database is injected - but for that it must first create an instance of the kind of logger which is configured for ICanLog. And so on ...
So, to cut a long story short: Dependency injection is one of two ways of how to remove dependencies in your code. It is very useful for configuration changes after compile-time, and it is a great thing for unit testing (as it makes it very easy to inject stubs and / or mocks).
In practice, there are things you can not do without a service locator (e.g., if you do not know in advance how many instances you do need of a specific interface: A DI framework always injects only one instance per parameter, but you can call a service locator inside a loop, of course), hence most often each DI framework also provides a service locator.
But basically, that's it.
P.S.: What I described here is a technique called constructor injection, there is also property injection where not constructor parameters, but properties are being used for defining and resolving dependencies. Think of property injection as an optional dependency, and of constructor injection as mandatory dependencies. But discussion on this is beyond the scope of this question.
I think a lot of times people get confused about the difference between dependency injection and a dependency injection framework (or a container as it is often called).
Dependency injection is a very simple concept. Instead of this code:
public class A {
private B b;
public A() {
this.b = new B(); // A *depends on* B
}
public void DoSomeStuff() {
// Do something with B here
}
}
public static void Main(string[] args) {
A a = new A();
a.DoSomeStuff();
}
you write code like this:
public class A {
private B b;
public A(B b) { // A now takes its dependencies as arguments
this.b = b; // look ma, no "new"!
}
public void DoSomeStuff() {
// Do something with B here
}
}
public static void Main(string[] args) {
B b = new B(); // B is constructed here instead
A a = new A(b);
a.DoSomeStuff();
}
And that's it. Seriously. This gives you a ton of advantages. Two important ones are the ability to control functionality from a central place (the Main() function) instead of spreading it throughout your program, and the ability to more easily test each class in isolation (because you can pass mocks or other faked objects into its constructor instead of a real value).
The drawback, of course, is that you now have one mega-function that knows about all the classes used by your program. That's what DI frameworks can help with. But if you're having trouble understanding why this approach is valuable, I'd recommend starting with manual dependency injection first, so you can better appreciate what the various frameworks out there can do for you.
As the other answers stated, dependency injection is a way to create your dependencies outside of the class that uses it. You inject them from the outside, and take control about their creation away from the inside of your class. This is also why dependency injection is a realization of the Inversion of control (IoC) principle.
IoC is the principle, where DI is the pattern. The reason that you might "need more than one logger" is never actually met, as far as my experience goes, but the actually reason is, that you really need it, whenever you test something. An example:
My Feature:
When I look at an offer, I want to mark that I looked at it automatically, so that I don't forget to do so.
You might test this like this:
[Test]
public void ShouldUpdateTimeStamp
{
// Arrange
var formdata = { . . . }
// System under Test
var weasel = new OfferWeasel();
// Act
var offer = weasel.Create(formdata)
// Assert
offer.LastUpdated.Should().Be(new DateTime(2013,01,13,13,01,0,0));
}
So somewhere in the OfferWeasel, it builds you an offer Object like this:
public class OfferWeasel
{
public Offer Create(Formdata formdata)
{
var offer = new Offer();
offer.LastUpdated = DateTime.Now;
return offer;
}
}
The problem here is, that this test will most likely always fail, since the date that is being set will differ from the date being asserted, even if you just put DateTime.Now in the test code it might be off by a couple of milliseconds and will therefore always fail. A better solution now would be to create an interface for this, that allows you to control what time will be set:
public interface IGotTheTime
{
DateTime Now {get;}
}
public class CannedTime : IGotTheTime
{
public DateTime Now {get; set;}
}
public class ActualTime : IGotTheTime
{
public DateTime Now {get { return DateTime.Now; }}
}
public class OfferWeasel
{
private readonly IGotTheTime _time;
public OfferWeasel(IGotTheTime time)
{
_time = time;
}
public Offer Create(Formdata formdata)
{
var offer = new Offer();
offer.LastUpdated = _time.Now;
return offer;
}
}
The Interface is the abstraction. One is the REAL thing, and the other one allows you to fake some time where it is needed. The test can then be changed like this:
[Test]
public void ShouldUpdateTimeStamp
{
// Arrange
var date = new DateTime(2013, 01, 13, 13, 01, 0, 0);
var formdata = { . . . }
var time = new CannedTime { Now = date };
// System under test
var weasel= new OfferWeasel(time);
// Act
var offer = weasel.Create(formdata)
// Assert
offer.LastUpdated.Should().Be(date);
}
Like this, you applied the "inversion of control" principle, by injecting a dependency (getting the current time). The main reason to do this is for easier isolated unit testing, there are other ways of doing it. For example, an interface and a class here is unnecessary since in C# functions can be passed around as variables, so instead of an interface you could use a Func<DateTime> to achieve the same. Or, if you take a dynamic approach, you just pass any object that has the equivalent method (duck typing), and you don't need an interface at all.
You will hardly ever need more than one logger. Nonetheless, dependency injection is essential for statically typed code such as Java or C#.
And...
It should also be noted that an object can only properly fulfill its purpose at runtime, if all its dependencies are available, so there is not much use in setting up property injection. In my opinion, all dependencies should be satisfied when the constructor is being called, so constructor-injection is the thing to go with.
I think the classic answer is to create a more decoupled application, which has no knowledge of which implementation will be used during runtime.
For example, we're a central payment provider, working with many payment providers around the world. However, when a request is made, I have no idea which payment processor I'm going to call. I could program one class with a ton of switch cases, such as:
class PaymentProcessor{
private String type;
public PaymentProcessor(String type){
this.type = type;
}
public void authorize(){
if (type.equals(Consts.PAYPAL)){
// Do this;
}
else if(type.equals(Consts.OTHER_PROCESSOR)){
// Do that;
}
}
}
Now imagine that now you'll need to maintain all this code in a single class because it's not decoupled properly, you can imagine that for every new processor you'll support, you'll need to create a new if // switch case for every method, this only gets more complicated, however, by using Dependency Injection (or Inversion of Control - as it's sometimes called, meaning that whoever controls the running of the program is known only at runtime, and not complication), you could achieve something very neat and maintainable.
class PaypalProcessor implements PaymentProcessor{
public void authorize(){
// Do PayPal authorization
}
}
class OtherProcessor implements PaymentProcessor{
public void authorize(){
// Do other processor authorization
}
}
class PaymentFactory{
public static PaymentProcessor create(String type){
switch(type){
case Consts.PAYPAL;
return new PaypalProcessor();
case Consts.OTHER_PROCESSOR;
return new OtherProcessor();
}
}
}
interface PaymentProcessor{
void authorize();
}
** The code won't compile, I know :)
The main reason to use DI is that you want to put the responsibility of the knowledge of the implementation where the knowledge is there. The idea of DI is very much inline with encapsulation and design by interface.
If the front end asks from the back end for some data, then is it unimportant for the front end how the back end resolves that question. That is up to the requesthandler.
That is already common in OOP for a long time. Many times creating code pieces like:
I_Dosomething x = new Impl_Dosomething();
The drawback is that the implementation class is still hardcoded, hence has the front end the knowledge which implementation is used. DI takes the design by interface one step further, that the only thing the front end needs to know is the knowledge of the interface.
In between the DYI and DI is the pattern of a service locator, because the front end has to provide a key (present in the registry of the service locator) to lets its request become resolved.
Service locator example:
I_Dosomething x = ServiceLocator.returnDoing(String pKey);
DI example:
I_Dosomething x = DIContainer.returnThat();
One of the requirements of DI is that the container must be able to find out which class is the implementation of which interface. Hence does a DI container require strongly typed design and only one implementation for each interface at the same time. If you need more implementations of an interface at the same time (like a calculator), you need the service locator or factory design pattern.
D(b)I: Dependency Injection and Design by Interface.
This restriction is not a very big practical problem though. The benefit of using D(b)I is that it serves communication between the client and the provider. An interface is a perspective on an object or a set of behaviours. The latter is crucial here.
I prefer the administration of service contracts together with D(b)I in coding. They should go together. The use of D(b)I as a technical solution without organizational administration of service contracts is not very beneficial in my point of view, because DI is then just an extra layer of encapsulation. But when you can use it together with organizational administration you can really make use of the organizing principle D(b)I offers.
It can help you in the long run to structure communication with the client and other technical departments in topics as testing, versioning and the development of alternatives. When you have an implicit interface as in a hardcoded class, then is it much less communicable over time then when you make it explicit using D(b)I. It all boils down to maintenance, which is over time and not at a time. :-)
Quite frankly, I believe people use these Dependency Injection libraries/frameworks because they just know how to do things in runtime, as opposed to load time. All this crazy machinery can be substituted by setting your CLASSPATH environment variable (or other language equivalent, like PYTHONPATH, LD_LIBRARY_PATH) to point to your alternative implementations (all with the same name) of a particular class. So in the accepted answer you'd just leave your code like
var logger = new Logger() //sane, simple code
And the appropriate logger will be instantiated because the JVM (or whatever other runtime or .so loader you have) would fetch it from the class configured via the environment variable mentioned above.
No need to make everything an interface, no need to have the insanity of spawning broken objects to have stuff injected into them, no need to have insane constructors with every piece of internal machinery exposed to the world. Just use the native functionality of whatever language you're using instead of coming up with dialects that won't work in any other project.
P.S.: This is also true for testing/mocking. You can very well just set your environment to load the appropriate mock class, in load time, and skip the mocking framework madness.

Specifying which concrete type to retrieve

I am looking at structuremap as an IOC/DI tool. Looking at this example:
http://docs.structuremap.net/QuickStart.htm
The only thing that does not make sense is, if I have an interface and derive several concrete types from it, in the code:
public class ClassThatGetsAnIValidator
{
public void SaveObject(object objectToSave)
{
// Go get the proper IValidator from StructureMap
IValidator validator = ObjectFactory.GetInstance();
var notification = validator.Validate(objectToSave);
if (notification.IsValid())
{
// save the object
}
}
}
How do I know which validator I get? IE I may have an AlphaBetValidator, NumericValidator, etc, with different method bodys and so on.....
I think this is the point:
Registering "what" and "how" StructureMap should build or find those requested services (the tedious part, but it's gotten much better over the years)
Which I struggle to grasp.
Please help.
Thanks
From the documentation:
If there is only one Instance for a registered PluginType, that
Instance will be assumed to be the default for the PluginType.
Otherwise, if there is more than one Instance for a PluginType,
StructureMap must be explicitly told which Instance is the default,
otherwise the call to GetInstance() will throw an exception (202).
To resolve to a particular instance you could use the naming mechanism. From the same documentation page:
Sometimes it's advantageous to retrieve a "named" instance of a type.
Let's say that you're building a system that needs to connect to
interface with multiple external shipping systems. You've designed an
interface for your system called IShippingSystem that hides the
details of each external shipping behind adapters. The rest of your
code should only "know" how to interact with the IShippingSystem, but
at some point, some class needs to know how to select and retrieve the
proper instance of IShippingSystem. Before the advent of IoC
containers like StructureMap, you would have coded a Factory class and
possibly a Builder class by hand to do the construction. With
StructureMap, this code is simply a call to the
ObjectFactory.GetNamedInstance(Type, string) method.
IShippingService internationalService = ObjectFactory.GetNamedInstance<IShippingService>("International");
IShippingService domesticService = ObjectFactory.GetNamedInstance<IShippingService>("Domestic");

Injecting generated classes without writing too much module configuration code

Here's the situation: I have an abstract class with a constructor that takes a boolean (which controls some caching behavior):
abstract class BaseFoo { protected BaseFoo(boolean cache) {...} }
The implementations are all generated source code (many dozens of them). I want to create bindings for all of them automatically, i.e. without explicit hand-coding for each type being bound. I want the injection sites to be able to specify either caching or non-caching (true/false ctor param). For example I might have two injections like:
DependsOnSomeFoos(#Inject #NonCaching AFoo aFoo, #Inject #Caching BFoo bFoo) {...}
(Arguably that's a bad thing to do, since the decision to cache or not might better be in a module. But it seems useful given what I'm working with.)
The question then is: what's the best way to configure bindings to produce a set of generated types in a uniform way, that supports a binding annotation as well as constructor param on the concrete class?
Previously I just had a default constructor on the implementation classes, and simply put an #ImplementedBy on each of the generated interfaces. E.g.:
// This is all generated source...
#ImplementedBy(AFooImpl.class)
interface AFoo { ... }
class AFooImpl extends BaseFoo implements AFoo { AFooImpl() { super(true); } }
But, now I want to allow individual injection points to decide if true or false is passed to BaseFoo, instead of it always defaulting to true. I tried to set up an injection listener to (sneakily) change the true/false value post-construction, but I couldn't see how to "listen" for a range of types injected with a certain annotation.
The problem I keep coming back to is that bindings need to be for a specific type, but I don't want to enumerate all my types centrally.
I also considered:
Writing some kind of scanner to discover all the generated classes and add a pair of bindings for each of them, perhaps using Google Reflections.
Creating additional, trivial "non caching" types (e.g. AFoo.NoCache extends AFoo), which would allow me to go back to #ImplementedBy.
Hard wiring each specific type as either caching/non-caching when it's generated.
I'm not feeling great about any of those ideas. Is there a better way?
UPDATE: Thanks for the comment and answer. I think generating a small module alongside each type and writing out a list of the modules to pull in at runtime via getResources is the winner.
That said, after talking w/ a coworker, we might just dodge the question as I posed it and instead inject a strategy object with a method like boolean shouldCache(Class<? extends BaseFoo> c) into each generated class. The strategy can be implemented on top of the application config and would provide coarse and fine grained control. This gives up on the requirement to vary the behavior by injection site. On the plus side, we don't need the extra modules.
There are two additional approaches to look at (in addition to what you mentioned):
Inject Factory classes instead of your real class; that is, your hand-coded stuff would end up saying:
#Inject
DependsOnSomeFoos(AFoo.Factory aFooFactory, BFoo.Factory bFooFactory) {
AFoo aFoo = aFooFactory.caching();
BFoo bFoo = bFooFactory.nonCaching();
...
}
and your generated code would say:
// In AFoo.java
interface AFoo {
#ImplementedBy(AFooImpl.Factory.class)
interface Factory extends FooFactory<AFoo> {}
// ...
}
// In AFooImpl.java
class AFooImpl extends BaseFoo implements AFoo {
AFooImpl(boolean caching, StuffNeededByAFIConstructor otherStuff) {
super(caching);
// use otherStuff
}
// ...
class Factory implements AFoo.Factory {
#Inject Provider<StuffNeededByAFIConstructor> provider;
public AFoo caching() {
return new AFooImpl(true, provider.get());
}
// ...
}
}
Of course this depends on an interface FooFactory:
interface FooFactory<T> {
T caching();
T nonCaching();
}
Modify the process that does your code generation to generate also a Guice module that you then use in your application setup. I don't know how your code generation is currently structured, but if you have some way of knowing the full set of classes at code generation time you can either do this directly or append to some file that can then be loaded with ClassLoader.getResources as part of a Guice module that autodiscovers what classes to bind.

ASP.NET MVC and IoC - Chaining Injection

Please be gentle, I'm a newb to this IoC/MVC thing but I am trying. I understand the value of DI for testing purposes and how IoC resolves dependencies at run-time and have been through several examples that make sense for your standard CRUD operations...
I'm starting a new project and cannot come up with a clean way to accomplish user permissions. My website is mostly secured with any pages with functionality (except signup, FAQ, about us, etc) behind a login. I have a custom identity that has several extra properties which control access to data... So....
Using Ninject, I've bound a concrete type* to a method (Bind<MyIdentity>().ToMethod(c => MyIdentity.GetIdentity()); so that when I add MyIdentity to a constructor, it is injected based on the results of the method call.
That all works well. Is it appropriate to (from the GetIdentity() method) directly query the request cookies object (via FormsAuthentication)? In testing the controllers, I can pass in an identity, but the GetIdentity() method will be essentially untestable...
Also, in the GetIdentity() method, I will query the database. Should I manually create a concrete instance of a repository?
Or is there a better way all together?
I think you are reasonably on the right track, since you abstracted away database communication and ASP.NET dependencies from your unit tests. Don't worry that you can't test everything in your tests. There will always be lines of code in your application that are untestable. The GetIdentity is a good example. Somewhere in your application you need to communicate with framework specific API and this code can not be covered by your unit tests.
There might still be room for improvement though. While an untested GetIdentity isn't a problem, the fact that it is actually callable by the application. It just hangs there, waiting for someone to accidentally call it. So why not abstract the creation of identities. For instance, create an abstract factory that knows how to get the right identity for the current context. You can inject this factory, instead of injecting the identity itself. This allows you to have an implementation defined near the application's composition root and outside reach of the rest of the application. Besides that, the code communicates more clearly what is happening. Nobody has to ask "which identity do I actually get?", because it will be clear by the method on the factory they call.
Here's an example:
public interface IIdentityProvider
{
// Bit verbose, but veeeery clear,
// but pick another name if you like,
MyIdentity GetIdentityForCurrentUser();
}
In your composition root you can have an implementation of this:
private sealed class AspNetIdentityProvider : IIdentityProvider
{
public MyIdentity GetIdentityForCurrentUser()
{
// here the code of the MyIdentity.GetIdentity() method.
}
}
As a trick I sometimes have my test objects implement both the factory and product, just for convenience during unit tesing. For instance:
private sealed class FakeMyIdentity
: FakeMyIdentity, IIdentityProvider
{
public MyIdentity GetIdentityForCurrentUser()
{
// just returning itself.
return this;
}
}
This way you can just inject a FakeMyIdentity in a constructor that expects an IIdentityProvider. I found out that this doesn’t sacrifice readability of the tests (which is important).
Of course you want to have as little code as possible in the AspNetIdentityProvider, because you can't test it (automatically). Also make sure that your MyIdentity class doesn't have any dependency on any framework specific parts. If so you need to abstract that as well.
I hope this makes sense.
There are two things I'd kinda do differently here...
I'd use a custom IPrincipal object with all the properties required for your authentication needs. Then I'd use that in conjunction with custom cookie creation and the AuthenticateRequest event to avoid database calls on every request.
If my IPrincipal / Identity was required inside another class, I'd pass it as a method parameter rather than have it as a dependency on the class it's self.
When going down this route I use custom model binders so they are then parameters to my actions rather than magically appearing inside my action methods.
NOTE: This is just the way I've been doing things, so take with a grain of salt.
Sorry, this probably throws up more questions than answers. Feel free to ask more questions about my approach.

Resources