Delphi - Interfaces and overload directive - delphi

I'm a little bit confused on interfaces in Delphi, so I'm asking you about this. An interface can be 'associated' with an abstract class. (It does not implement the methods declared on it.) All the methods declared on it are implemented in the class/classes which is/are implementing the interface.
So, why then is it allowed to have the overload directive on the method declaration of an interface?
type
IFoo = interface
function Test : String; overload;
end;
Compiler is quiet on this.

overloaded allows to have few the same named methods, but with different parameter sets, in a single class / interface.
Your interface has Test method. With this single method there is no need for overloaded. But you can introduce, if you need, additional Test methods with differrent parameter sets.
Probably you are thinking about override directive ...

Related

Can I make the compiler fail if Create is called explicitly?

I have many singletons where I don't want the developers to call the constructor Create. Instead they should use the function Instance
TdgpBankBranch = class(TDataGroup)
strict private
class var InstanceVar : TdgpBankBranch;
private
{ Only for internal use }
constructor Create (AOwner : TComponent); reintroduce;
protected
public
class function Instance : TdgpBankBranch;
class function Is_A_Live_Singleton: boolean;
property Rec[Bank, Branch : integer]: TBankBranch read GetRec; default;
end;
I have been shifting the constructors to private. This makes the code analysers complain "Non-public constructor".
I could shift them back to public. Is there a way to make the compiler fail if an attempt is made at using the constructor ?
Moving the constructor to private will prevent other units from being able to call Create() directly, however code inside the same unit as the class will still be able to call it unhindered, due to implicit friendship within a unit. If you don't want any code outside of the class calling Create() directly, even in the same unit, then declare it as strict private so only the class itself can call it directly.
You ask how to stop the compiler from creating an object when somebody calls .create, but what you're trying to do is create a singleton, so it helps to see how others solved this.
In Delphi, singletons are often implemented via a function that's declared in the interface section and which returns an object that's declared in the implementation section of a unit. The function creates the instance if it doesn't exist yet, to provide lazy loading. Cleanup is done via the finalization section.
In your situation, instead of having an instance() function, you just create a global function that gives you an instance.
This approach probably stems from the days before classes and private sections existed, but it's pretty straightforward, and prevents the issue that you're running in to. Look at how TClipboard is implemented. This implementation is not possible in Java or C# because they don't have global functions, or the type of scoping that makes this Delphi implementation work...
Or take a look at this answer by David Heffernan:
Delphi Singleton Pattern
It's even better than TClipboard, because it hides the entire class in the implementation section, truly preventing people to create instances themselves, but you'll have to create an interface for your class.

Assigning interface pointers in a Delphi 6 class declaration?

Despite years of Delphi programming I just ran into a class declaration style I had never seen for a class that supports IUnknown:
TBCUnknown = class(TBCBaseObject, IUnKnown)
private
FRefCount: integer;
FOwner : Pointer;
protected
function IUnknown.QueryInterface = NonDelegatingQueryInterface;
function IUnknown._AddRef = NonDelegatingAddRef;
function IUnknown._Release = NonDelegatingRelease;
function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
...
As you can see, assignments of class methods to IUnknown interface methods are being done right in the class declaration. This looks really strange to me especially since I don't see how the IUnknown methods could be assigned to, before the constructor is called. Is this some kind of compile-time shortcut for making assignments between a class's methods and the interface pointers for an interface the class accepts, that are later resolved at run-time? If someone could provide a little information on how this works and what Delphi idiom supports this kind of construct I'd like to know.
It's called Method Resolution Clause and it allows you to specify which method actually implements the specified interface method. This means that the implementing method can have a different name than the method declared in the interface (but the method signature still has to match). Without the clause, Delphi automatically resolves the implementation methods based on their names.
In your example, the declaration means that IUnknown._AddRef is implemented by TBCUnknown.NonDelegatingAddRef and IUnknown._Release by TBCUnknown.NonDelegatingRelease.
As far as I know, this has been supported from the beginning when interface support was added to the language. You probably haven't noticed it because it's not used or needed so often.
This is what is known as a Method Resolution Clause. To quote from the documentation:
You can override the default name-based mappings by including method resolution clauses in a class declaration. When a class implements two or more interfaces that have identically named methods, use method resolution clauses to resolve the naming conflicts.

SW-Design: Adapters for Class Hierarchy in Delphi (Generics vs. Downcast)

I would like to have some suggestions for the following problem:
Let's say you want to write adapters for the VCL controls. All Adapters should have the same base class, but differ in wrapping special controls (for example getting a value from a TEdit is different from getting a value from TSpinEdit).
So the first idea is to create a class hierarchy like
TAdapter = class
end;
TEditAdapter = class (TAdapter)
end;
TSpinEditAdapter = class (TAdapter)
end;
Now I want to introduce a field to hold a reference to the vcl control. In my special adapaters I want - of course - work with the concrete subclass. But the Base class should also contain a reference (for example if I want to use the adapter to make a control visible).
Possibility 1 (Downcast in Property Accessor):
TAdapter = class
protected
FCtrl : TControl;
end;
TEditAdapter = class (TAdapter)
public
property Control : TEdit read GetControl write Setcontrol;
end;
{...}
function TEditAdapter.GetControl : TEdit;
begin
Result := FCtrl as TEdit;
end;
So if I implement a specific method I work with the property Control, if I do something in my base class I use the protected field.
Possibility 2 (Use a generic base class):
TAdapter = class
end;
TAdapter <T : TControl> = class (TAdapter)
protected
FCtrl : T;
end;
TEditAdapter = class (TAdapter <TEdit>)
end;
Which solution would you prefer? Or is there a third solution, which is even better?
Kind regards,
Christian
You can't use generics to solve this problem, because you'll be in one of two situations:
The property or method you want to "Adapt" (the Text property for example) is defined in an ancestor class. In that case you don't need generics because you can use the one adapter for the ancestor and solve the problem for all descendants.
The property or method is introduced by the class you want to adapt. In that case you can't use generics because in order to access the property or method you'd need a generic type constraint of that given type. Example. Let's say you want an adapter for the Text property of TMyClass. Let's assume TMyClass is the one introducing the Text property. In order to access it, you'd need to declare the generic type as TGeneric<T:TMyClass> and that's not actually generic.
In my opinion the best bet is to write specific adapters for each class, as in your first option. You might be able to use RTTI tricks to make your first option easier to implement, but I'm not sure it'd be worth it.
The generics version could allow to avoid some duplicated code, at least in the TAdapter class. By using the T type, it will allow a lot of shared code.
On the other hand, due to the VCL hierarchy, most used properties and methods will already be in TControl. So I'm not sure there will be so many duplicated code in non-generic implementation.
I suspect the non-generic version will produce less code and RTTI, since the current generics implementation tends not to duplicate the source, but increase the exe size.
IMHO the generic-based design will add more abstraction to the implementation, but the non-generic would perhaps be more close to the VCL hierarchy it will adapt on.
So for your particular case (mapping the VCL), since your attempt is to map non generic classes, I'd rather investigate into the non-generic solution.
For another (non VCL-based) adapter architecture, I would probably have advised a pure generic implementation, from the bottom up.

Can a Delphi generic class descend from its class argument?

I've been trying to define a generic, inheritable TSingleton class. Here's what I had in progress:
TSingleton<RealClass, InheritsFrom : class> = class(InheritsFrom)
strict private
class var FInstance : RealClass;
protected
procedure InstanceInitialization;virtual;
public
destructor Destroy; override;
class procedure Create; reintroduce;
class function Instance : RealClass;
class procedure InstanceFree;
end;
The goal was to be able to "insert" the singleton pattern in an inheritance tree. so instead of declaring something like this :
TMySingletonComponent = class(TComponent)
end;
And need to implement the singleton pattern there, I would declare something like this :
TMyGenericSingletonComponent = class(TSingleton<TMyGenericSingletonComponent,TComponent>)
end;
Sadly, this won't work. I'm getting the following error(In D2010):
TSingleton<RealClass, InheritsFrom : class> = class(InheritsFrom) ///E2021 Class type required
Now I was wondering, would this work in Delphi XE? Is there some "clean hack" I could use to make this work in D2010? Is there some fundamental reasons why this can't work?
By design, you can't create a generic class which derives from one of its type arguments.
No, that won't work. You're trying to define a class in terms of itself. Whatever you put inside the parameters has to be fully defined already.
What do you want to obtain?
IMHO, singletons are evil. They were introduced because of bad OOP design of C++ (for access to input/output streams in console applications, as far as I remember). And they tend to be like hell to maintain.
You can always live without them. It's definitively not a "Delphi classical" way of programing, because Delphi doesn't suffer the C++ problems I mentioned.
Some Java project (ab)uses of singleton. Google for it, and you'll find out what I mean.
Use a property of a common class with a getter, initializing an instance if the corresponding field is still nil, or directly returning the field pointer to the instance if it was already created. You'll have the singleton feature, with good performance, nice code, good OOP practice (no "global" class), and the ability to run the class without any singleton feature, if you don't need this feature later (for testing purpose, for instance).

F#: Implementation of interface that returns reference to iterator

I am implementing the Microsoft.VisualC.StlClr IVector and one of the member functions returns a reference to an iterator, like so
abstract begin :
:ContainerRandomAccessIterator<'TValue> byref -> unit
Would someone know how this interface function could be implemented?
B.
after looking at this interface in Reflector I'd rather say that it is impossible to implement it in F#. Method begin (as well as some other methods) has custom required modifier IsUdtReturn (modreq[IsUdtReturn]) and it seems it is not recognized by F# compiler. However I'll be glad to know that I'm wrong.

Resources