Ninject - binding constructors with arguments / Entity Framework connection string - asp.net-mvc

Please forgive my ignorance, but I am very new to IOC and NinJect. I have searched for high and low for easily understandable solutions but so far they have eluded me.
So far I have the following and all works as expected:
private class StandardModule : NinjectModule
{
public override void Load()
{
Bind<ILog>().To<NLogLogger>(); // Use NLog
Bind<IMyEntityFrameWorkRepository().To<MyEntityFrameWorkRepository>();
}
}
MyEntityFrameWorkRepository then creates its own EF DbContext via a connection string declared in app/web.config:
public class MyDbContext : DbContext
{
public MyDbContext() : base("MyAppConfig")
{
}
........
}
HOWEVER!! My goal is something like this - I realise this syntax is "nonsense" (and I think I may have to IOC MyDbConext too) , but I hope the "pseudo-code" conveys my desire:
private class StandardModule : NinjectModule
{
public override void Load()
{
Bind<ILog>().To<NLogLogger>(); // Use NLog
string mySqlConnectionString = MyApp.GetCommandLineArgument("sqlconn"); // "Data Source=..."
Bind<IMyEntityFrameWorkRepository().To<MyEntityFrameWorkRepository>(mySqlConnectionString);
}
}
.................
public class MyDbContext : DbContext
{
public MyDbContext( string sqlConnectionString) :
base(sqlConnectionString) // will accept a standard SQL connection string
{
}
........
}
I would truly appreciate some feedback from IOC / NinJect experts, since I am sure any "pattern" can be very useful in other scenarios.

You can use the .WithConstructorArgument() method to specify constructor arguments. The first argument should be the name of the constructor parameter.
public class StandardModule : NinjectModule
{
public override void Load()
{
string connectionString = "...";
Bind<IMyEntityFrameWorkRepository().To<MyEntityFrameWorkRepository>()
.WithConstructorArgument("sqlConnectionString", connectionString);
}
}

Newer versions of Ninject allow to get rid of magic strings in the binding definition. Something like this:
public class StandardModule : NinjectModule
{
public override void Load()
{
string connectionString = "...";
Bind<IMyEntityFrameWorkRepository()
.ToConstructor(_ => new MyEntityFrameWorkRepository(connectionString);
}
}
For bindings involving generic types (e.g. bind ISomeService<T> to SomeService<T> and binding should be performed for all possible types at once), ToConstructor cannot be used (a new expression is required), so WithConstructorArgument remains the simplest approach. E.g.:
Bind(typeof(ISomeService<>))
.To(typeof(SomeService<>))
.WithConstructorArgument("someParam", "someValue");

Related

Structuremap config with runtime value ...For<IProductProvider>().Use<ProductProvider>.Ctor<string>("connectionString").Is(someValueAtRunTime);

Structuremap experts,
I found this post on stackoverflow ...
Passing constructor arguments when using StructureMap
Someone suggested to use the StructureMap configuration with runtime value like this
For<IProductProvider>().Use<ProductProvider>.Ctor<string>("connectionString").Is(someValueAtRunTime);
But example is not adequate enough to understand its declaration and usage. I try to find on StructureMap site as well but not much help ...
In my situation, I want to pass on the dependency of concrete DbContext (IDbContext) to the constructor of the class with connection string dynamically created during run time within that class.
Finally I managed to make it working ...
Here how I did it ...
Hope it will help someone, and thanks to PHeiberg for answer me before and showing me right direction.
Interface Definition
public interface ICreditCard
{
string GetName();
}
public interface IAdditionalCreditCard : ICreditCard
{
}
public class AdditionalCreditCard : IAdditionalCreditCard
{
private readonly string _name;
public AdditionalCreditCard(string name)
{
_name = name;
}
public string GetName()
{
return _name;
}
}
Define function in Structure map config code
Func<string, IAdditionalCreditCard> additionalCreditCard = value =>
ObjectFactory.With("name").EqualTo(value).GetInstance<AdditionalCreditCard>();
Add following configuration in ObjectFactory.Configure
ObjectFactory.Configure(config =>
{
config.For<Func<string, IAdditionalCreditCard>>().Use(additionalCreditCard);
});
And in code ...
public class PaymentSystem
{
private readonly Func<string, IAdditionalCreditCard> _addtionalCreditCard;
private IAdditionalCreditCard _addCreditCard;
public PaymentSystem(Func<string, IAdditionalCreditCard> additionalCredit)
{
_addtionalCreditCard = additionalCredit;
}
public string AddtionalSystemType()
{
_addCreditCard = _addtionalCreditCard("American Express");
return _addCreditCard.GetName();
}
}
The code you are posting is supposed to go in the setup code for StructureMap, which can go in the Initialize/Configure method or a Registry. The setup code is normally executed only once in the application's life cycle. So if you know the connection string value when the application is stared and you configure StructureMap, you can put the code you posted in the initialization of StructureMap. If the value is not known until later on, you need some kind of factory approach.
A factory approach could be done like this (in your StructureMap configuration code):
Func<string, IDbContext> createContext = value => {
/* create context based on value */
};
ObjectFactory.Initialize(c => {
For<Func<string, IDbContext>>().Use(createContext);
// The rest of you configuration ...
});
You can now use the Func to create an instance of the context when you need it:
public class ProductProvider : IProductProvider
{
private readonly Func<string, IDbContext> _contextCreator;
public ProductProvider(Func<string, IDbContext> contextCreator)
{
_contextCreator = contextCreator;
}
public IEnumerable<Product> GetProducts(string someValue)
{
using(var context = contextCreator(someValue))
{
return SomeOperationOnThe(context);
}
}
}

How to Inject properly an IDBContextFactory into a controller's inject IDomainFactory using Ninject MVC3?

Preliminaries
I'm using Ninject.MVC3 2.2.2.0 Nuget Package for injecting into my controller an implementation of a IDomain Interface that separates my Business Logic (BL) using an Factory approach.
I'm registering my Ninject Modules in the preconfigured NinjectMVC3.cs using:
private static void RegisterServices(IKernel kernel)
{
var modules = new INinjectModule[]
{
new DomainBLModule(),
new ADOModule()
};
kernel.Load(modules);
}
I'm trying to avoid the fatal curse of the diabolic Service Locator anti-pattern.
The Domain Class uses a DBContext that i'm trying to inject an interface implementation too, via an IDBContext, with the following scenario:
IDomainBLFactory:
public interface IDomainBLFactory
{
DomainBL CreateNew();
}
DomainBLFactory:
public class DomainBLFactory : IDomainBLFactory
{
public DomainBL CreateNew()
{
return new DomainBL();
}
}
In the controller's namespace:
public class DomainBLModule : NinjectModule
{
public override void Load()
{
Bind<IDomainBLFactory>().To<DomainBLFactory>().InRequestScope();
}
}
At this point i can inject the IDomainBLFactory implementation into my controller using Ninject Constructor Injection without any problem:
public class MyController : Controller
{
private readonly IDomainBLFactory DomainBLFactory;
// Default Injected Constructor
public MyController(IDomainBLFactory DomainBLFactory)
{
this.DomainBLFactory = DomainBLFactory;
}
... (use the Domain for performing tasks/commands with the Database Context)
}
Now my central problem.
In the DomainBL implementation, i will inject the dependency to a particular DBContext, in this case ADO DBContext from Entity Framework, again, using a IDBContextFactory:
IDbDataContextFactory
public interface IDbDataContextFactory
{
myADOEntities CreateNew();
}
DbDataContextFactory
public class DbDataContextFactory : IDbDataContextFactory
{
public myADOEntities CreateNew()
{
return new myADOEntities ();
}
}
ADOModule
public class ADOModule : NinjectModule
{
public override void Load()
{
Bind<IDbDataContextFactory>().To<DbDataContextFactory>().InRequestScope();
}
}
Now in the DomainBL implementation I faced the problem of injecting the necessary interface for the DBContext Object Factory:
public class DomainBL
{
private readonly IDbDataContextFactory contextFactory;
**** OPS, i tried to understand about 10+ Stackoverflow articles ***
...
}
What have I tried?
To Use the constructor Injection. But I don't know what to inject in the call for the Factory CreateNew() in the IDBContextFactory. For clear:
public class DomainBLFactory: IDomainBLFactory
{
// Here the constructor requires one argument for passing the factory impl.
public DomainBL CreateNew()
{
return new DomainBL(?????) // I need a IDBContextFactory impl to resolve.
//It's not like in the MVC Controller where injection takes place internally
//for the controller constructor. I'm outside a controller
}
}
In this Useful Post, our unique true friend Remo Gloor describes in a comment a possible solution for me, citing: "Create an interface that has a CreateSomething method that takes everything you need to create the instance and have it return the instance. Then in your configuration you implement this interface and add an IResolutionRoot to its constructor and use this instace to Get the required object."
Questions: How do I implement this in a proper way using Ninject.MVC3 and my modest Domain Class approach? How do I Resolve the IResolutionRoot without be punished for relaying in the Service Locator anti-pattern?
To Use the property injection for an IDBContexFactory. In the course of learning and reading all the contradictory points of view plus the theoretical explanations about it, I can deduce it's not a proper way of doing the injection for my DBContexFactory class code. Nevermind. It doesn't work anyway.
public class DomainBL
{
[Inject]
public IDbDataContextFactory contextFactory
{
get;
set;
}
//Doesn't works, contextFactory is null with or without parameterless constructor
.... (methods that uses contextFactory.CreateNew()....
}
Question: What am I missing? Even if this approach is wrong the property is not injecting.
Be cursed. Use a DependencyResolver and live with the stigmata. This works and I will remain in this approach until a proper solution appears for me. And this is really frustrating because the lack of knowledge in my last 10 days effort trying to understand and do things right.
public class DomainBL
{
private readonly IDbDataContextFactory contextFactory;
this.contextFactory = DependencyResolver.Current.GetService<IDbDataContextFactory>();
//So sweet, it works.. but i'm a sinner.
}
Question: Is there a big mistake in my understanding of the Factory Approach for the injection of interfaced implementations and using a Domain Driven Approach for taking apart the Business Logic? In the case I'm wrong, what stack of patterns should I implement with confidence?
I saw before a really big quantity of articles and blogs that does not ask this important question in a open a clear way.
Remo Gloor introduces the Ninject.Extensions.Factory for the Ninject 3.0.0 RC in www.planetgeek.ch/2011/12/31/ninject-extensions-factory-introduction.
Question: Will this extension work coupled with Ninject.MVC3 for general porpouse?. In such case it should be my hope for the near future.
Thank you all in advance for your guidance and remember we appreciate your kind help. I think a lot of people will find this scenario useful too.
I don't really get the purpose of your factories. Normally, you have exactly one ObjectContext instance for one request. This means you don't need the factory and can simply bind myADOEntities in Request scope and inject it into your DomainBL without adding the factories:
Bind<myADOEntities>().ToSelf().InRequestScope();
Bind<DomainBL>().ToSelf().InRequestScope();
And Yes the factory and mvc extrensions work together.
Here's an implementation of a generic IFactory to solve the problem without resorting to the ServiceLocator anti-pattern.
First you define a nice generic factory interface
public interface IFactory<T>
{
T CreateNew();
}
And define the implementation which uses ninject kernel to create the objects requested
class NinjectFactory<T> : IFactory<T>
{
private IKernel Kernel;
public NinjectFactory( IKernel Kernel )
{
this.Kernel = Kernel;
}
public T CreateNew()
{
return Kernel.Get<T>();
}
}
Binding to your factory using the following
private static void RegisterServices(IKernel kernel)
{
kernel.Bind<myADOEntities>().ToSelf();
kernel.Bind<DomainBL>().ToSelf();
kernel.Bind(typeof(IFactory<>)).To(typeof(NinjectFactory<>));
}
You can now do the following in your controller.
public class MyController : Controller
{
private readonly IFactory<DomainBL> DomainBLFactory;
public MyController( IFactory<DomainBL> DomainBLFactory )
{
this.DomainBLFactory = DomainBLFactory;
}
// ... (use the Domain for performing tasks/commands with the Database Context)
}
And in your DomainBL
public class DomainBL
{
IFactory<myADOEntities> EntitiesFactory;
public DomainBL( IFactory<myADOEntities> EntitiesFactory )
{
this.EntitiesFactory = EntitiesFactory;
}
// ... (use the Entities factory whenever you need to create a Domain Context)
}

Passing in the type of the declaring class for NLog using Autofac

Following on from this question I would like autofac to inject the type of the declaring object into the constructor of my NLog service, so that it can correctly log which type is logging entries.
My NLogService class looks like this...
public class NLogService : ILogService
{
private readonly Logger _logger;
public NLogService(Type t)
{
var consumerType = t.DeclaringType.FullName;
_logger = LogManager.GetLogger(consumerType);
}
However it fails on app startup because it obviously cannot work out what to inject into the constructor of the NLogService with the following error...
None of the constructors found with
'Public binding flags' on type
'MyProduct.Domain.Services.Logging.NLogService'
can be invoked with the available
services and parameters: Cannot
resolve parameter 'System.Type t' of
constructor 'Void .ctor(System.Type)'.
So, my question is - how do i instruct autofac to inject the type of the calling class?
I tried this...
public NLogService(Type t)
{
var method = MethodBase.GetCurrentMethod();
Type consumingType = method.DeclaringType;
var consumerType = consumingType.FullName;
var consumerType = t.DeclaringType.FullName;
_logger = LogManager.GetLogger(consumerType);
}
But i just end up with MyProduct.Domain.Services.Logging.NLogService
What i want is the type of the class that is doing the actual logging.
i have already tried this suggestion and it didnt work for me either.
Could make your NLogService generic, i.e. NLogService<T> and use Autofac's open generics support?
Then you could do this:
public class NLogService<T> : ILogger<T>
{
private readonly Logger _logger;
public NLogService()
{
_logger = LogManager.GetLogger(typeof(T).FullName);
}
}
There is no real good way to do this with Autofac, because does not have support for 'context based injection' (which is what you are trying to do). There is a workaround, but it aint pretty...
What you can do is revert to property injection and define a base class or interface for that ILogService property. For instance, you can define the following interface:
public interface ILoggerContainer
{
public ILogService Logger { get; set; }
}
Now you can implement this interface on all types that need a logger:
public class Consumer : IConsumer, ILoggerContainer
{
public ILogService Logger { get; set; }
}
With this in place you can configure Autofac as follows:
builder.RegisterType<ILoggerContainer>()
.OnActivating(e =>
{
var type = typeof(LogService<>)
.MakeGenericType(e.Instance.GetType());
e.Instance.Logger = e.Context.Resolve(type);
});
Another workaround, that you may find cleaner is to inject an ILogger<T> with the same type as the type of the parent type:
public class Consumer : IConsumer
{
public Consumer(ILogger<Consumer> logger) { }
}
This makes the configuration much easier and prevents you from having to have a base class. Which one is most appropriate is up to you.
As I said, these are workarounds, but to be honest, you might need to reconsider your logging strategy in your application. Perhaps you are logging at too many places. In the applications I write there is hardly ever a need to log, and when I do, I write an logging message that is expressive enough so that there is no need to communicate the type that triggered the event. And when you log exception, you will always have a complete stack trace (and exception logging should almost only happen in the outer layer of your application and not within services anyway).
The following technique works well in our experience:
Create an attribute like below, which can be applied at class level or at the injection site:
[AttributeUsage(AttributeTargets.Parameter | AttributeTargets.Class)]
public class LoggerAttribute : Attribute
{
public readonly string Name;
public LoggerAttribute(string name)
{
Name = name;
}
}
Create an Autofac module that you register with the ContainerBuilder:
public class LogInjectionModule : Module
{
protected override void AttachToComponentRegistration(IComponentRegistry registry, IComponentRegistration registration)
{
registration.Preparing += OnComponentPreparing;
}
static void OnComponentPreparing(object sender, PreparingEventArgs e)
{
var typePreparing = e.Component.Activator.LimitType;
// By default, the name supplied to the logging instance is the name of the type in which it is being injected into.
string loggerName = typePreparing.FullName;
//If there is a class-level logger attribute, then promote its supplied name value instead as the logger name to use.
var loggerAttribute = (LoggerAttribute)typePreparing.GetCustomAttributes(typeof(LoggerAttribute), true).FirstOrDefault();
if (loggerAttribute != null)
{
loggerName = loggerAttribute.Name;
}
e.Parameters = e.Parameters.Union(new Parameter[]
{
new ResolvedParameter(
(p, i) => p.ParameterType == typeof (Logger),
(p, i) =>
{
// If the parameter being injected has its own logger attribute, then promote its name value instead as the logger name to use.
loggerAttribute = (LoggerAttribute)
p.GetCustomAttributes(typeof(LoggerAttribute),true).FirstOrDefault();
if (loggerAttribute != null)
{
loggerName = loggerAttribute.Name;
}
// Return a new Logger instance for injection, parameterised with the most appropriate name which we have determined above.
return LogManager.GetLogger(loggerName);
}),
// Always make an unamed instance of Logger available for use in delegate-based registration e.g.: Register((c,p) => new Foo(p.TypedAs<Logger>())
new TypedParameter(typeof(Logger), LogManager.GetLogger(loggerName))
});
}
}
You can now inject a named Logger in any one of these ways depending on individual scenarios:
By default, the injected logger name will be given the full type name of the class it is injected into:
public class Foo
{
public Foo(Logger logger)
{
}
}
Use a constructor parameter [Logger] attribute to override the logger name:
public class Foo
{
public Foo([Logger("Meaningful Name")]Logger logger)
{
}
}
Use a class-level [Logger] attribute to set the same logger name override for all constructor overloads:
[Logger("Meaningful Name")]
public class Foo
{
public Foo(Logger logger, int something)
{
}
public Foo(Logger logger, int something, DateTime somethingElse)
{
}
}
Use constructor parameter [Logger] attributes on each constructor overload to set different logger names depending on the context of how you were constructed:
public class Foo
{
public Foo(Logger("Meaningful Name")]Logger logger, int something)
{
}
public Foo(Logger("Different Name")]Logger logger, int something, DateTime somethingElse)
{
}
}
IMPORTANT NOTE: If you register types to be resolved with logger constructor injection using Autofac's delegate registration, you MUST use the two parameter overload like so: Register((c,p) => new Foo(p.TypedAs<Logger>()).
Hope this helps!
It is possible to do this without generics.
However, please note that in Autofac 6.x, the resolution process has changed to use a resolve pipeline. This doesn't matter for most scenarios, but it does when you want to use the lifetime events like OnPreparing, etc. Most of the answers here on SO around overriding the Preparing event are very old and are now outdated. You can't override Preparing directly anymore.
There is an example on the Autofac documentation site doing this for log4net, and it works with NLog with only minor changes. Here is the basic idea:
public class Log4NetMiddleware : IResolveMiddleware
{
public PipelinePhase Phase => PipelinePhase.ParameterSelection;
public void Execute(ResolveRequestContext context, Action<ResolveRequestContext> next)
{
// Add our parameters.
context.ChangeParameters(context.Parameters.Union(
new[]
{
new ResolvedParameter(
(p, i) => p.ParameterType == typeof(ILog),
(p, i) => LogManager.GetLogger(p.Member.DeclaringType)
),
}));
// Continue the resolve.
next(context);
// Has an instance been activated?
if (context.NewInstanceActivated)
{
var instanceType = context.Instance.GetType();
// Get all the injectable properties to set.
// If you wanted to ensure the properties were only UNSET properties,
// here's where you'd do it.
var properties = instanceType
.GetProperties(BindingFlags.Public | BindingFlags.Instance)
.Where(p => p.PropertyType == typeof(ILog) && p.CanWrite && p.GetIndexParameters().Length == 0);
// Set the properties located.
foreach (var propToSet in properties)
{
propToSet.SetValue(context.Instance, LogManager.GetLogger(instanceType), null);
}
}
}
}
Please also note that you have to understand how middleware works in Autofac. The documentation is a good place to start.

How do I handle classes with static methods with Ninject?

How do I handle classes with static methods with Ninject?
That is, in C# one can not have static methods in an interface, and Ninject works on the basis of using interfaces?
My use case is a class that I would like it to have a static method to create an
unpopulated instance of itself.
EDIT 1
Just to add an example in the TopologyImp class, in the GetRootNodes() method, how would I create some iNode classes to return? Would I construct these with normal code practice or would I somehow use Ninject? But if I use the container to create then haven't I given this library knowledge of the IOC then?
public interface ITopology
{
List<INode> GetRootNodes();
}
public class TopologyImp : ITopology
{
public List<INode> GetRootNodes()
{
List<INode> result = new List<INode>();
// Need code here to create some instances, but how to without knowledge of the container?
// e.g. want to create a few INode instances and add them to the list and then return the list
}
}
public interface INode
{
// Parameters
long Id { get; set; }
string Name { get; set; }
}
class NodeImp : INode
{
public long Id
{
get { throw new NotImplementedException(); }
set { throw new NotImplementedException(); }
}
public string Name
{
get { throw new NotImplementedException(); }
set { throw new NotImplementedException(); }
}
}
// Just background to highlight the fact I'm using Ninject fine to inject ITopology
public partial class Form1 : Form
{
private ITopology _top;
public Form1()
{
IKernel kernal = new StandardKernel(new TopologyModule());
_top = kernal.Get<ITopology>();
InitializeComponent();
}
}
If you're building a singleton or something of that nature and trying to inject dependencies, typically you instead write your code as a normal class, without trying to put in lots of (probably incorrect) code managing the singleton and instead register the object InSingletonScope (v2 - you didnt mention your Ninject version). Each time you do that, you have one less class that doesnt surface its dependencies.
If you're feeling especially bloody-minded and are certain that you want to go against that general flow, the main tools Ninject gives you is Kernel.Inject, which one can use after you (or someone else) has newd up an instance to inject the dependencies. But then to locate one's Kernelm you're typically going to be using a Service Locator, which is likely to cause as much of a mess as it is likely to solve.
EDIT: Thanks for following up - I see what you're after. Here's a hacky way to approximate the autofac automatic factory mechanism :-
/// <summary>
/// Ugly example of a not-very-automatic factory in Ninject
/// </summary>
class AutomaticFactoriesInNinject
{
class Node
{
}
class NodeFactory
{
public NodeFactory( Func<Node> createNode )
{
_createNode = createNode;
}
Func<Node> _createNode;
public Node GenerateTree()
{
return _createNode();
}
}
internal class Module : NinjectModule
{
public override void Load()
{
Bind<Func<Node>>().ToMethod( context => () => Kernel.Get<Node>() );
}
}
[Fact]
public void CanGenerate()
{
var kernel = new StandardKernel( new Module() );
var result = kernel.Get<NodeFactory>().GenerateTree();
Assert.IsType<Node>( result );
}
}
The ToMethod stuff is a specific application of the ToProvider pattern -- here's how you'd do the same thing via that route:-
...
class NodeProvider : IProvider
{
public Type Type
{
get { return typeof(Node); }
}
public object Create( IContext context )
{
return context.Kernel.Get<Node>();
}
}
internal class Module : NinjectModule
{
public override void Load()
{
Bind<Func<Node>>().ToProvider<NodeProvider>();
}
}
...
I have not thought this through though and am not recommending this as A Good Idea - there may be far better ways of structuring something like this. #Mark Seemann? :P
I believe Unity and MEF also support things in this direction (keywords: automatic factory, Func)
EDIT 2: Shorter syntax if you're willing to use container-specific attributes and drop to property injection (even if Ninject allows you to override the specific attributes, I much prefer constructor injection):
class NodeFactory
{
[Inject]
public Func<Node> NodeFactory { private get; set; }
public Node GenerateTree()
{
return NodeFactory();
}
}
EDIT 3: You also need to be aware of this Ninject Module by #Remo Gloor which is slated to be in the 2.4 release
EDIT 4: Also overlapping, but not directly relevant is the fact that in Ninject, you can request an IKernel in your ctor/properties and have that injected (but that doesn't work directly in a static method).

How do I use Windsor to inject dependencies into ActionFilterAttributes

Having seen how NInject can do it and AutoFac can do it I'm trying to figure out how to inject dependencies into MVC ActionFilters using Castle Windsor
At the moment I'm using an ugly static IoC helper class to resolve dependencies from the constructor code like this:
public class MyFilterAttribute : ActionFilterAttribute
{
private readonly IUserRepository _userRepository;
public MyFilterAttribute() : this(IoC.Resolve<IUserRepository>()) { }
public MyFilterAttribute(IUserRepository userRepository)
{
_userRepository = userRepository;
}
}
I'd love to remove that static antipattern IoC thing from my filters.
Any hints to as how I would go about doing that with Castle Windsor?
And no, changing DI framework is not an option.
When I needed this, I built upon the work others have done with Ninject and Windsor to get property injection dependencies on my ActionFilters.
Make a generic attribute: MyFilterAttribute with ctor taking a Type as argument - i.e. something like this:
public class MyFilterAttribute : ActionFilterAttribute {
public MyFilterAttribute(Type serviceType) {
this.serviceType = serviceType;
}
public override void OnActionExecuting(FilterExecutingContext c) {
Container.Resolve<IFilterService>(serviceType).OnActionExecuting(c);
// alternatively swap c with some context defined by you
}
// (...) action executed implemented analogously
public Type ServiceType { get { return serviceType; } }
public IWindsorContainer Container { set; get; }
}
Then use the same approach as the two articles you are referring to, in order to take control of how actions are invoked, and do a manual injection of your WindsorContainer into the attribute.
Usage:
[MyFilter(typeof(IMyFilterService))]
Your actual filter will then be in a class implementing IMyFilterService which in turn should implement IFilterService which could look something like this:
public interface IFilterService {
void ActionExecuting(ActionExecutingContext c);
void ActionExecuted(ActionExecutedContext c);
}
This way your filter will not even be tied to ASP.NET MVC, and your attribute is merely a piece of metadata - the way it is actually supposed to be! :-)

Resources