XNA - UV texture or shader texture? - xna

I'm trying to decide whether to draw a texture on geometry using UV texture mapping or drawing it with a shader. Any benefit to doing it either way? Why would you choose one over the other? This is in XNA 4.0.

As far as I know, shaders use UV texture mapping. So there is no real choice.
UV-mapping states that you define address values that map from your object to your texture. I have the following references for you:
http://rbwhitaker.wikidot.com/xna-tutorials
http://en.wikipedia.org/wiki/Texture_mapping
http://msdn.microsoft.com/en-us/library/bb976075%28v=xnagamestudio.31%29.aspx
http://msdn.microsoft.com/en-us/library/bb206245%28v=vs.85%29.aspx

Related

Is there any way to combine/compound multiple shaders for a single object?

I'm using a vertex shader to help me calculate lighting, and I'm using it to render every object in my scene. If I wanted to make a specific vertex shader for grass movement while still keeping the lighting, how would I do that? Can I somehow render it using both the lighting shader and grass shader? Or can i create some type of compound "grass and lighting" shader? Or do I just have to copy all the lighting logic into my grass shader?

OpenGL Image warping using lookup table

I am working on an Android application that slims or fatten faces by detecting it. Currently, I have achieved that by using the Thin-plate spline algorithm.
http://ipwithopencv.blogspot.com.tr/2010/01/thin-plate-spline-example.html
The problem is that the algorithm is not fast enough for me so I decided to change it to OpenGL. After some research, I see that the lookup table texture is the best option for this. I have a set of control points for source image and new positions of them for warp effect.
How should I create lookup table texture to get warp effect?
Are you really sure you need a lookup texture?
Seems that it`d be better if you had a textured rectangular mesh (or a non-rectangular mesh, of course, as the face detection algorithm you have most likely returns a face-like mesh) and warped it according to the algorithm:
Not only you`d be able to do that in a vertex shader, thus processing each mesh node in parallel, but also it`s less values to process compared to dynamic texture generation.
The most compatible method to achieve that is to give each mesh point a Y coordinate of 0 and X coordinate where the mesh index would be stored, and then pass a texture (maybe even a buffer texture if target devices support it) to the vertex shader, where at the needed index the R and G channels contain the desired X and Y coordinates.
Inside the vertex shader, the coordinates are to be loaded from the texture.
This approach allows for dynamic warping without reloading geometry, if the target data texture is properly updated — for example, inside a pixel shader.

how to check a texture is 2d texture or cube texture in webgl

how to check a texture is 2d texture or cube texture in webgl ? I want check Texture type to do different things. webgl has only one interface for texture WebGLTexture.
You can't.
You're the one who created the textures so you can keep track of them yourself.
you could
Create your own class for each type of texture
Make a function createTexture that checks the target and puts each texture in an array for that type. then check if the texture is in the array to find out the type. Or, augment the texture object with a type
Wrap WebGLRenderingContext.prototype.createTexture to do the stuff above.
the sky's the limit.

How to draw each a vertex of a mesh as a circle

How to draw each a vertex of a mesh as a circle?
You can do it using geometry shaders to create billboarding geometry from each vertex on the GPU. You can then either create the circles as geometry, or create quads and use a circle texture to draw them (I recommend the later). But geometry shaders are not extensively supported yet, even less in iOS. If you know for sure that that computer in which you'll run this supports it, go for it.
If geometry shading isn't an option, your two best options are:
Use a Particle System, that already handles mesh creation and billboarding. To create a particle at each vertex position use ParticleSystem.Emit. Your system's simulation space should be Local. If the vertices move, use SetParticles to update them.
Creating a procedural Mesh that already contains the geometry you need. If the camera and points don't move you can get away with creating the mesh in a fixed shape. Otherwise you will need to animate the billboarding, either on the procedural mesh, or by shader.
Update: 5,000,000 points is a lot. Although Particle Systems can work with big numbers by creating lots of internal meshes, the vast amount of processing really eats up the CPU. And even if the points are static in space, a procedural mesh with no special shaders must be updated each frame for billboading effects.
My advice is creating many meshes (a single mesh cannot handle that amount of geometry). The meshes will cointain a quad per point (or triangles if you dare, to make it faster), but the four vertices will be located in the same point. You then use the texture coordinates during the vertex program to expand it into a billboarding quad.
Assuming you are talking about 2D mesh:
Create a circle game object (or a game object with a circle shaped texture), and export it as a prefab:
var meshFilter = GetComponent(typeof(MeshFilter)) as MeshFilter;
var mesh = meshFilter.mesh;
foreach(var v in mesh.vertices)
{
var obj= Instantiate(circlePrefab, v, Quaternion.identity);
}

GPGPU programming with OpenGL ES 2.0

I am trying to do some image processing on the GPU, e.g. median, blur, brightness, etc. The general idea is to do something like this framework from GPU Gems 1.
I am able to write the GLSL fragment shader for processing the pixels as I've been trying out different things in an effect designer app.
I am not sure however how I should do the other part of the task. That is, I'd like to be working on the image in image coords and then outputting the result to a texture. I am aware of the gl_FragCoords variable.
As far as I understand it it goes like that: I need to set up a view (an orthographic one maybe?) and a quad in such a way so that the pixel shader would be applied once to each pixel in the image and so that it would be rendering to a texture or something. But how can I achieve that considering there's depth that may make things somewhat awkward to me...
I'd be very grateful if anyone could help me with this rather simple task as I am really frustrated with myself.
UPDATE:
It seems I'll have to use an FBO, getting one like this: glBindFramebuffer(...)
Use this tutorial, it's targeted at OpenGL 2.0, but most features are available in ES 2.0, the only thing i have doubts is floating point textures.
http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html
Basically, you need 4 vertex positions (as vec2) of a quad (with corners (-1,-1) and (1,1)) passed as a vertex attribute.
You don't really need a projection, because the shader will not need any.
Create an FBO, bind it and attach the target surface. Don't forget to check the completeness status.
Bind the shader, set up input textures and draw the quad.
Your vertex shader may look like this:
#version 130
in vec2 at_pos;
out vec2 tc;
void main() {
tc = (at_pos+vec2(1.0))*0.5; //texture coordinates
gl_Position = vec4(at_pos,0.0,1.0); //no projection needed
}
And a fragment shader:
#version 130
in vec2 tc;
uniform sampler2D unit_in;
void main() {
vec4 v = texture2D(unit_in,tc);
gl_FragColor = do_something();
}
If you want an example, I created this project for iOS devices for processing frames of video grabbed from the camera using OpenGL ES 2.0 shaders. I explain more about it in my writeup here.
Basically, I pull in the BGRA data for a frame and create a texture from that. I then use two triangles to generate a rectangle and map the texture on that. A shader is used to directly display the image onscreen, perform some effect on the image and display it, or perform some effect on the image while in an offscreen FBO. In the last case, I can then use glReadPixels() to pull in the image for some CPU-based processing, but ideally I want to fix this so that the processed image is just passed on as a texture to the next set of shaders.
You should also check out ogles_gpgpu, which even supports Android systems. An overview about this topic is given in this publication: Parallel Computing for Digital Signal Processing on Mobile Device GPUs.
You can do more advanced GPGPU things with OpenGL ES 3.0 now. Check out this post for example. Apple now also has the "Metal API" which allows even more GPU compute operations. Both, OpenGL ES 3.x and Metal are only supported by newer devices with A7 chip.

Resources