isolate lua from locale - lua

I am considering embedding Lua in C++ app (running under FreeBSD 8.2). But benchmarking revealed poor performance in some cases. Specifically when Lua tries to convert strings to numbers and compare strings, it becomes slower, and worse, ruins scalability (8 cores perform worse than one!). I now think it is locale, because when I avoid auto-conversion everything works fine. But for real life I will need string comparisons and number conversions. How can I:
isolate Lua from locale, i.e. ensure that none of Lua's functions use locale indirectly. For instance can I provide my own conversion and comparison functions?
or disable locale altogether. I tried setlocale (LC_ALL, "C"), it works ok (locale changes), but bottleneck remains
Update:
following suggestion by lhf I jumped right into Lua library code. What I found is dozens of places where (officially) locale-dependent functions are used. To remove all of them would cost too much effort, there must be a better way. I tried to measure which of them do not scale. I also added some other commonly used functions, as well as some of my own interest (Lua interpreter creation and destruction, setting global variable, etc). Results follow. The correct percentage must be 700%, i.e. 7 threads must perform 7 times better than 1 thread:
nop: 824% (1:106867300/7:881101495)
sprintf %f: 57% (1:2093975/7:1203949)
sprintf %.14g: 51% (1:2503818/7:1278312)
sprintf %.14lf: 73% (1:2134432/7:1576657)
sprintf %lf: 64% (1:2083480/7:1340885)
sprintf %d: 601% (1:6388005/7:38426161)
sscanf %s: 181% (1:8484822/7:15439285)
sscanf %f: 712% (1:3722659/7:26511335)
lua_cycle: 677% (1:113483/7:768936)
set_global: 715% (1:1506045/7:10780282)
set_get_global: 605% (1:2814992/7:17044081)
strcoll: 670% (1:38361144/7:257300597)
getenv: 681% (1:8526168/7:58131030)
isdigit: 695% (1:106894420/7:743529202)
isalpha: 662% (1:80771002/7:535055196)
isalpha(r): 638% (1:78232353/7:499207555)
strtol: 694% (1:16865106/7:117208528)
strtod: 749% (1:16727244/7:125323881)
time: 168% (1:727666/7:1225499)
gettimeofday: 162% (1:727549/7:1183433)
figures change from run to run, but big picture remains consistent: sprintf double conversions perform worse than on single thread. time and gettimeofday scale badly. sscanf with %s also scales poorly which is quite surprising, but not an issue in my case.
At last it probably was not locale at all. I changed Lua conversion from sprintf to some simplified hand-made code and everything works fine so far..
BTW, first benchmark was run on linux desktop and showed nothing so strange. I was surprised by its FreeBSD behaviour.

To avoid locales in string comparison, change strcoll to strcmp in lvm.c. To avoid locales in string-to-number conversions, change the definition of lua_str2number in luaconf.h to avoid strtod. (Note however that supplying your own strtod is not an easy task.) You can also remove trydecpoint in llex.c.

Related

which is more important, number of variables or subexpressions?

I presume the technique detecting shared expressions is applied on most of modern SMT solvers. The performance should be very good when it processes a sequence of similar expressions. However, I got unexpected results after I run Z3 on input1 and input2. Instead of build a long constraint A in "input1", some intermediate variables are defined to map to the sub-expressions of A in "input2". In that case, input1 has less variables, which should be solved faster than input2. I cannot find useful information from the statistic as they are exactly same except the solving time and memory consumed:
I would very much appreciate if someone can answer/explain what affects the performance of the SMT solvers more, the number of variables or number of subexpressions?
I've done some profiling, and it seems that both inputs behave exactly the same in the solver. All (check-sat) commands take exactly the same time. Note that input 2 is a file of size 255KB, but input1 is a file of size 240MB, i.e., this file is about 1000 times larger than the first one. According to my profiler, all of the additional time required to solve these queries is spent in the parser. So, it simply takes a long time to read and check the input; the actual queries are all easy.

False autovectorization in Intel C compiler (icc)

I need to vectorize with SSE a some huge loops in a program. In order to save time I decided to let ICC deal with it. For that purpose, I prepare properly the data, taking into account the alignment and I make use of the compiler directives #pragma simd, #pragma aligned, #pragma ivdep. When compiling with the several -vec-report options, compiler tells me that loops were vectorized. A quick look to the assembly generated by the compiler seems to confirm that, since you can find there plenty of vectorial instructions that works with packed single precision operands (all operations in the serial code handler float operands).
The problem is that when I take hardware counters with PAPI the number of FP operations I get (PAPI_FP_INS and PAPI_FP_OPS) is pretty the same in the auto-vectorized code and the original one, when one would expect to be significantly less in the auto-vectorized code. What's more, a vectorized by-hand a simplified problem of the one that concerns and in this case I do get something like 3 times less of FP operations.
Has anyone experienced something similar with this?
Spills may destroy the advantage of vectorization, thus 64-bit mode may gain significantly over 32-bit mode. Also, icc may version a loop and you may be hitting a scalar version even though there is a vector version present. icc versions issued in the last year or 2 have fixed some problems in this area.

Why does this code causes the machine to crash?

I am trying to run this code but it keeps crashing:
log10(x):=log(x)/log(10);
char(x):=floor(log10(x))+1;
mantissa(x):=x/10**char(x);
chop(x,d):=(10**char(x))*(floor(mantissa(x)*(10**d))/(10**d));
rnd(x,d):=chop(x+5*10**(char(x)-d-1),d);
d:5;
a:10;
Ibwd:[[30,rnd(integrate((x**60)/(1+10*x^2),x,0,1),d)]];
for n from 30 thru 1 step -1 do Ibwd:append([[n-1,rnd(1/(2*n-1)-a*last(first(Ibwd)),d)]],Ibwd);
Maxima crashes when it evaluates the last line. Any ideas why it may happen?
Thank you so much.
The problem is that the difference becomes negative and your rounding function dies horribly with a negative argument. To find this out, I changed your loop to:
for n from 30 thru 1 step -1 do
block([],
print (1/(2*n-1)-a*last(first(Ibwd))),
print (a*last(first(Ibwd))),
Ibwd: append([[n-1,rnd(1/(2*n-1)-a*last(first(Ibwd)),d)]],Ibwd),
print (Ibwd));
The last difference printed before everything fails miserably is -316539/6125000. So now try
rnd(-1,3)
and see the same problem. This all stems from the fact that you're taking the log of a negative number, which Maxima interprets as a complex number by analytic continuation. Maxima doesn't evaluate this until it absolutely has to and, somewhere in the evaluation code, something's dying horribly.
I don't know the "fix" for your specific example, since I'm not exactly sure what you're trying to do, but hopefully this gives you enough info to find it yourself.
If you want to deconstruct a floating point number, let's first make sure that it is a bigfloat.
say z: 34.1
You can access the parts of a bigfloat by using lisp, and you can also access the mantissa length in bits by ?fpprec.
Thus ?second(z)*2^(?third(z)-?fpprec) gives you :
4799148352916685/140737488355328
and bfloat(%) gives you :
3.41b1.
If you want the mantissa of z as an integer, look at ?second(z)
Now I am not sure what it is that you are trying to accomplish in base 10, but Maxima
does not do internal arithmetic in base 10.
If you want more bits or fewer, you can set fpprec,
which is linked to ?fpprec. fpprec is the "approximate base 10" precision.
Thus fpprec is initially 16
?fpprec is correspondingly 56.
You can easily change them both, e.g. fpprec:100
corresponds to ?fpprec of 335.
If you are diddling around with float representations, you might benefit from knowing
that you can look at any of the lisp by typing, for example,
?print(z)
which prints the internal form using the Lisp print function.
You can also trace any function, your own or system function, by trace.
For example you could consider doing this:
trace(append,rnd,integrate);
If you want to use machine floats, I suggest you use, for the last line,
for n from 30 thru 1 step -1 do :
Ibwd:append([[n-1,rnd(1/(2.0*n- 1.0)-a*last(first(Ibwd)),d)]],Ibwd);
Note the decimal points. But even that is not quite enough, because integration
inserts exact structures like atan(10). Trying to round these things, or compute log
of them is probably not what you want to do. I suspect that Maxima is unhappy because log is given some messy expression that turns out to be negative, even though it initially thought otherwise. It hands the number to the lisp log program which is perfectly happy to return an appropriate common-lisp complex number object. Unfortunately, most of Maxima was written BEFORE LISP HAD COMPLEX NUMBERS.
Thus the result (log -0.5)= #C(-0.6931472 3.1415927) is entirely unexpected to the rest of Maxima. Maxima has its own form for complex numbers, e.g. 3+4*%i.
In particular, the Maxima display program predates the common lisp complex number format and does not know what to do with it.
The error (stack overflow !!!) is from the display program trying to display a common lisp complex number.
How to fix all this? Well, you could try changing your program so it computes what you really want, in which case it probably won't trigger this error. Maxima's display program should be fixed, too. Also, I suspect there is something unfortunate in simplification of logs of numbers that are negative but not obviously so.
This is probably waaay too much information for the original poster, but maybe the paragraph above will help out and also possibly improve Maxima in one or more places.
It appears that your program triggers an error in Maxima's simplification (algebraic identities) code. We are investigating and I hope we have a bug fix soon.
In the meantime, here is an idea. Looks like the bug is triggered by rnd(x, d) when x < 0. I guess rnd is supposed to round x to d digits. To handle x < 0, try this:
rnd(x, d) := if x < 0 then -rnd1(-x, d) else rnd1(x, d);
rnd1(x, d) := (... put the present definition of rnd here ...);
When I do that, the loop runs to completion and Ibwd is a list of values, but I don't know what values to expect.

What are the advantages of the "apply" functions? When are they better to use than "for" loops, and when are they not? [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
Is R's apply family more than syntactic sugar
Just what the title says. Stupid question, perhaps, but my understanding has been that when using an "apply" function, the iteration is performed in compiled code rather than in the R parser. This would seem to imply that lapply, for instance, is only faster than a "for" loop if there are a great many iterations and each operation is relatively simple. For instance, if a single call to a function wrapped up in lapply takes 10 seconds, and there are only, say, 12 iterations of it, I would imagine that there's virtually no difference at all between using "for" and "lapply".
Now that I think of it, if the function inside the "lapply" has to be parsed anyway, why should there be ANY performance benefit from using "lapply" instead of "for" unless you're doing something that there are compiled functions for (like summing or multiplying, etc)?
Thanks in advance!
Josh
There are several reasons why one might prefer an apply family function over a for loop, or vice-versa.
Firstly, for() and apply(), sapply() will generally be just as quick as each other if executed correctly. lapply() does more of it's operating in compiled code within the R internals than the others, so can be faster than those functions. It appears the speed advantage is greatest when the act of "looping" over the data is a significant part of the compute time; in many general day-to-day uses you are unlikely to gain much from the inherently quicker lapply(). In the end, these all will be calling R functions so they need to be interpreted and then run.
for() loops can often be easier to implement, especially if you come from a programming background where loops are prevalent. Working in a loop may be more natural than forcing the iterative computation into one of the apply family functions. However, to use for() loops properly, you need to do some extra work to set-up storage and manage plugging the output of the loop back together again. The apply functions do this for you automagically. E.g.:
IN <- runif(10)
OUT <- logical(length = length(IN))
for(i in IN) {
OUT[i] <- IN > 0.5
}
that is a silly example as > is a vectorised operator but I wanted something to make a point, namely that you have to manage the output. The main thing is that with for() loops, you always allocate sufficient storage to hold the outputs before you start the loop. If you don't know how much storage you will need, then allocate a reasonable chunk of storage, and then in the loop check if you have exhausted that storage, and bolt on another big chunk of storage.
The main reason, in my mind, for using one of the apply family of functions is for more elegant, readable code. Rather than managing the output storage and setting up the loop (as shown above) we can let R handle that and succinctly ask R to run a function on subsets of our data. Speed usually does not enter into the decision, for me at least. I use the function that suits the situation best and will result in simple, easy to understand code, because I'm far more likely to waste more time than I save by always choosing the fastest function if I can't remember what the code is doing a day or a week or more later!
The apply family lend themselves to scalar or vector operations. A for() loop will often lend itself to doing multiple iterated operations using the same index i. For example, I have written code that uses for() loops to do k-fold or bootstrap cross-validation on objects. I probably would never entertain doing that with one of the apply family as each CV iteration needs multiple operations, access to lots of objects in the current frame, and fills in several output objects that hold the output of the iterations.
As to the last point, about why lapply() can possibly be faster that for() or apply(), you need to realise that the "loop" can be performed in interpreted R code or in compiled code. Yes, both will still be calling R functions that need to be interpreted, but if you are doing the looping and calling directly from compiled C code (e.g. lapply()) then that is where the performance gain can come from over apply() say which boils down to a for() loop in actual R code. See the source for apply() to see that it is a wrapper around a for() loop, and then look at the code for lapply(), which is:
> lapply
function (X, FUN, ...)
{
FUN <- match.fun(FUN)
if (!is.vector(X) || is.object(X))
X <- as.list(X)
.Internal(lapply(X, FUN))
}
<environment: namespace:base>
and you should see why there can be a difference in speed between lapply() and for() and the other apply family functions. The .Internal() is one of R's ways of calling compiled C code used by R itself. Apart from a manipulation, and a sanity check on FUN, the entire computation is done in C, calling the R function FUN. Compare that with the source for apply().
From Burns' R Inferno (pdf), p25:
Use an explicit for loop when each
iteration is a non-trivial task. But a
simple loop can be more clearly and
compactly expressed using an apply
function. There is at least one
exception to this rule ... if the result will
be a list and some of the components
can be NULL, then a for loop is
trouble (big trouble) and lapply gives
the expected answer.

Does functional programming take up more memory?

Warning! possibly a very dumb question
Does functional programming eat up more memory than procedural programming?
I mean ... if your objects(data structures whatever) are all imutable. Don't you end up having more object in the memory at a given time.
Doesn't this eat up more memory?
It depends on what you're doing. With functional programming you don't have to create defensive copies, so for certain problems it can end up using less memory.
Many functional programming languages also have good support for laziness, which can further reduce memory usage as you don't create objects until you actually use them. This is arguably something that's only correlated with functional programming rather than a direct cause, however.
Persistent values, that functional languages encourage but which can be implemented in an imperative language, make sharing a no-brainer.
Although the generally accepted idea is that with a garbage collector, there is some amount of wasted space at any given time (already unreachable but not yet collected blocks), in this context, without a garbage collector, you end up very often copying values that are immutable and could be shared, just because it's too much of a mess to decide who is responsible for freeing the memory after use.
These ideas are expanded on a bit in this experience report which does not claim to be an objective study but only anecdotal evidence.
Apart from avoiding defensive copies by the programmer, a very smart implementation of pure functional programming languages like Haskell or Standard ML (which lack physical pointer equality) can actively recover sharing of structurally equal values in memory, e.g. as part of the memory management and garbage collection.
Thus you can have automatic hash consing provided by your programming language runtime-system.
Compare this with objects in Java: object identity is an integral part of the language definition. Even just exchanging one immutable String for another poses semantic problems.
There is indeed at least a tendency to regard memory as affluent ressource (which, in fact, it really is in most cases), but this applies to modern programming as a whole.
With multiple cores, parallel garbage collectors and available RAM in the gigabytes, one used to concentrate on different aspects of a program than in earlier times, when every byte one could save counted. Remember when Bill Gates said "640K should be enough for every program"?
I know that I'm a lot late on this question.
Functional languages does not in general use more memory than imperative or OO languages. It depends more on the code you write. Yes F#, SML, Haskell and such has immutable values (not variables), but for all of them it goes without saying that if you update f.x. a single linked list, it re-compute only what is necessary.
Say you got a list of 5 elements, and you are removing the first 3 and adding a new one in front of it. it will simply get the pointer that points to the fourth element and let the new list point to that point of data i.e. reusing data. as seen below.
old list
[x0,x1,x2]
\
[x3,x4]
new list /
[y0,y1]
If it was an imperative language we could not do this because the values x3 and x4 could very well change over time, the list [x3,x4] could change too. Say that the 3 elements removed are not used afterward, the memory they use can be cleaned up right away, in contrast to unused space in an array.
That all data are immutable (except IO) are a strength. It simplifies the data flow analysis from a none trivial computation to a trivial one. This combined with a often very strong type system, will give the compiler a bunch of information about the code it can use to do optimization it normally could not do because of indicability. Most often the compiler turn values that are re-computed recursively and discarded from each iteration (recursion) into a mutable computation. These two things gives you the proof that if your program compile it will work. (with some assumptions)
If you look at the language Rust (not functional) just by learning about "borrow system" you will understand more about how and when things can be shared safely. it is a language that is painful to write code in unless you like to see your computer scream at you that your are an idiot. Rust is for the most part the combination of all the study made of programming language and type theory for more than 40 years. I mention Rust, because it despite the pain of writing in it, has the promise that if your program compile, there will be NO memory leaking, dead locking, dangling pointers, even in multi processing programs. This is because it uses much of the research of functional programming language that has been done.
For a more complex example of when functional programming uses less memory, I have made a lexer/parser interpreter (the same as generator but without the need to generate a code file) when computing the states of the DFA (deterministic finite automata) it uses immutable sets, because it compute new sets of already computed sets, my code allocate less memory simply because it borrow already known data points instead of copying it to a new set.
To wrap it up, yes functional programming can use more memory than imperative once. Most likely it is because you are using the wrong abstraction to mirror the problem. i.e. If you try to do it the imperative way in a functional language it will hurt you.
Try this book, it has not much on memory management but is a good book to start with if you will learn about compiler theory and yes it is legal to download. I have ask Torben, he is my old professor.
http://hjemmesider.diku.dk/~torbenm/Basics/
I'll throw my hat in the ring here. The short answer to the question is no, and this is because immutability does not mean the same thing as stored in memory. For example, let's take this toy program :
x = 2
x = x * 3
x = x * 2
print(x)
Which uses mutation to compute new values. Compare this to the same program which does not use mutation:
x = 2
y = x * 3
z = y * 2
print(z)
At first glance, it appears this requires 3x the memory of the first program! However, just because a value is immutable doesn't mean it needs to be stored in memory. In the case of the second program, after y is computed, x is no longer necessary, because it isn't used for the rest of the program, and can be garbage collected, or removed from memory. Similarly, after z is computed, y can be garbage collected. So, in principle, with a perfect garbage collector, after we execute the third line of code, I only need to have stored z in memory.
Another oft-worried about source of memory consumption in functional languages is deep recursion. For example, calculating a large Fibonacci number.
calc_fib(x):
if x > 1:
return x * calc_fib(x-1)
else:
return x
If I run calc_fib(100000), I could implement this in a way which requires storing 100000 values in memory, or I could use Tail-Call Elimination (basically storing only the most-recently computed value in memory instead of all function calls). For less straightforward recursion you can resort to trampolining. So for functional languages which support this, recursion does not need to be a source of massive memory consumption, either. However, not all nominally functional languages do (for example, JavaScript does not).

Resources