Related
I have this .bib file for reference management while writing my thesis in LaTeX:
#article{garg2017patch,
title={Patch testing in patients with suspected cosmetic dermatitis: A retrospective study},
author={Garg, Taru and Agarwal, Soumya and Chander, Ram and Singh, Aashim and Yadav, Pravesh},
journal={Journal of Cosmetic Dermatology},
year={2017},
publisher={Wiley Online Library}
}
#article{hauso2008neuroendocrine,
title={Neuroendocrine tumor epidemiology},
author={Hauso, Oyvind and Gustafsson, Bjorn I and Kidd, Mark and Waldum, Helge L and Drozdov, Ignat and Chan, Anthony KC and Modlin, Irvin M},
journal={Cancer},
volume={113},
number={10},
pages={2655--2664},
year={2008},
publisher={Wiley Online Library}
}
#article{siperstein1997laparoscopic,
title={Laparoscopic thermal ablation of hepatic neuroendocrine tumor metastases},
author={Siperstein, Allan E and Rogers, Stanley J and Hansen, Paul D and Gitomirsky, Alexis},
journal={Surgery},
volume={122},
number={6},
pages={1147--1155},
year={1997},
publisher={Elsevier}
}
If anyone wants to know what bib file is, you can find it detailed here.
I'd like to parse this with Perl 6 to extract the key along with the title like this:
garg2017patch: Patch testing in patients with suspected cosmetic dermatitis: A retrospective study
hauso2008neuroendocrine: Neuroendocrine tumor epidemiology
siperstein1997laparoscopic: Laparoscopic thermal ablation of hepatic neuroendocrine tumor metastases
Can you please help me to do this, maybe in two ways:
Using basic Perl 6
Using a Perl 6 Grammar
TL;DR
A complete and detailed answer that does just exactly as #Suman asks.
An introductory general answer to "I want to parse X. Can anyone help?"
A one-liner in a shell
I'll start with terse code that's perfect for some scenarios[1], and which someone might write if they're familiar with shell and Raku basics and in a hurry:
> raku -e 'for slurp() ~~ m:g / "#article\{" (<-[,]>+) \, \s+
"title=\{" (<-[}]>+) \} / -> $/ { put "$0: $1\n" }' < derm.bib
This produces precisely the output you specified:
garg2017patch: Patch testing in patients with suspected cosmetic dermatitis: A retrospective study
hauso2008neuroendocrine: Neuroendocrine tumor epidemiology
siperstein1997laparoscopic: Laparoscopic thermal ablation of hepatic neuroendocrine tumor metastases
Same single statement, but in a script
Skipping shell escapes and adding:
Whitespace.
Comments.
► use tio.run to run the code below
for slurp() # "slurp" (read all of) stdin and then
~~ m :global # match it "globally" (all matches) against
/ '#article{' (<-[,]>+) ',' \s+ # a "nextgen regex" that uses (`(...)`) to
'title={' (<-[}]>+) '}' / # capture the article id and title and then
-> $/ { put "$0: $1\n" } # for each article, print "article id: title".
Don't worry if the above still seems like pure gobbledygook. Later sections explain the above while also introducing code that's more general, clean, and readable.[2]
Four statements instead of one
my \input = slurp;
my \pattern = rule { '#article{' ( <-[,]>+ ) ','
'title={' ( <-[}]>+ ) }
my \articles = input .match: pattern, :global;
for articles -> $/ { put "$0: $1\n" }
my declares a lexical variable. Raku supports sigils at the start of variable names. But it also allows devs to "slash them out" as I have done.
my \pattern ...
my \pattern = rule { '#article{' ( <-[,]>+ ) ','
'title={' ( <-[}]>+ ) }
I've switched the pattern syntax from / ... / in the original one-liner to rule { ... }. I did this to:
Eliminate the risk of pathological backtracking
Classic regexes risk pathological backtracking. That's fine if you can just kill a program that's gone wild, but click the link to read how bad it can get! 🤪 We don't need backtracking to match the .bib format.
Communicate that the pattern is a rule
If you write a good deal of pattern matching code, you'll frequently want to use rule { ... }. A rule eliminates any risk of the classic regex problem just described (pathological backtracking), and has another superpower. I'll cover both aspects below, after first introducing the adverbs corresponding to those superpowers.
Raku regexes/rules can be (often are) used with "adverbs". These are convenient shortcuts that modify how patterns are applied.
I've already used an adverb in the earlier versions of this code. The "global" adverb (specified using :global or its shorthand alias :g) directs the matching engine to consume all of the input, generating a list of as many matches as it contains, instead of returning just the first match.
While there are shorthand aliases for adverbs, some are used so repeatedly that it's a lot tidier to bundle them up into distinct rule declarators. That's why I've used rule. It bundles up two adverbs appropriate for matching many data formats like .bib files:
:ratchet (alias :r)
:sigspace (alias :s)
Ratcheting (:r / :ratchet) tells the compiler that when an "atom" (a sub-pattern in a rule that is treated as one unit) has matched, there can be no going back on that. If an atom further on in the pattern in the same rule fails, then the whole rule immediately fails.
This eliminates any risk of the "pathological backtracking" discussed earlier.
Significant space handling (:s / :sigspace) tells the compiler that an atom followed by literal spacing that is in the pattern indicates that a "token" boundary pattern, aka ws should be appended to the atom.
Thus this adverb deals with tokenizing. Did you spot that I'd dropped the \s+ from the pattern compared to the original one in the one-liner? That's because :sigspace, which use of rule implies, takes care of that automatically:
say 'x#y x # y' ~~ m:g:s /x\#y/; # (「x#y」) <-- only one match
say 'x#y x # y' ~~ m:g /x \# y/; # (「x#y」) <-- only one match
say 'x#y x # y' ~~ m:g:s /x \# y/; # (「x#y」 「x # y」) <-- two matches
You might wonder why I've reverted to using / ... / to show these two examples. Turns out that while you can use rule { ... } with the .match method (described in the next section), you can't use rule with m. No problem; I just used :s instead to get the desired effect. (I didn't bother to use :r for ratcheting because it makes no difference for this pattern/input.)
To round out this dive into the difference between classic regexes (which can also be written regex { ... }) and rule rules, let me mention the other main option: token. The token declarator implies the :ratchet adverb, but not the :sigspace one. So it also eliminates the pathological backtracking risk of a regex (or / ... /) but, just like a regex, and unlike a rule, a token ignores whitespace used by a dev in writing out the rule's pattern.
my \articles = input .match: pattern, :global
This line uses the method form (.match) of the m routine used in the one-liner solution.
The result of a match when :global is used is a list of Match objects rather than just one. In this case we'll get three, corresponding to the three articles in the input file.
for articles -> $/ { put "$0: $1\n" }
This for statement successively binds a Match object corresponding to each of the three articles in your sample file to the symbol $/ inside the code block ({ ... }).
Per Raku doc on $/, "$/ is the match variable, so it usually contains objects of type Match.". It also provides some other conveniences; we take advantage of one of these conveniences related to numbered captures:
The pattern that was matched earlier contained two pairs of parentheses;
The overall Match object ($/) provides access to these two Positional captures via Positional subscripting (postfix []), so within the for's block, $/[0] and $/[1] provide access to the two Positional captures for each article;
Raku aliases $0 to $/[0] (and so on) for convenience, so most devs use the shorter syntax.
Interlude
This would be a good time to take a break. Maybe just a cuppa, or return here another day.
The last part of this answer builds up and thoroughly explains a grammar-based approach. Reading it may provide further insight into the solutions above and will show how to extend Raku's parsing to more complex scenarios.
But first...
A "boring" practical approach
I want to parse this with Raku. Can anyone help?
Raku may make writing parsers less tedious than with other tools. But less tedious is still tedious. And Raku parsing is currently slow.
In most cases, the practical answer when you want to parse well known formats and/or really big files is to find and use an existing parser. This might mean not using Raku at all, or using an existing Raku module, or using an existing non-Raku parser in Raku.
A suggested starting point is to search for the file format on modules.raku.org or raku.land. Look for a publicly shared parsing module already specifically packaged for Raku for the given file format. Then do some simple testing to see if you have a good solution.
At the time of writing there are no matches for 'bib'.
Even if you don't know C, there's almost certainly a 'bib' parsing C library already available that you can use. And it's likely to be the fastest solution. It's typically surprisingly easy to use an external library in your own Raku code, even if it's written in another programming language.
Using C libs is done using a feature called NativeCall. The doc I just linked may well be too much or too little, but please feel free to visit the freenode IRC channel #raku and ask for help. (Or post an SO question.) We're friendly folk. :)
If a C lib isn't right for a particular use case, then you can probably still use packages written in some other language such as Perl, Python, Ruby, Lua, etc. via their respective Inline::* language adapters.
The steps are:
Install a package (that's written in Perl, Python or whatever);
Make sure it runs on your system using a compiler of the language it's written for;
Install the appropriate Inline language adapter that lets Raku run packages in that other language;
Use the "foreign" package as if it were a Raku package containing exported Raku functions, classes, objects, values, etc.
(At least, that's the theory. Again, if you need help, please pop on the IRC channel or post an SO question.)
The Perl adapter is the most mature so I'll use that as an example. Let's say you use Perl's Text::BibTex packages and now wish to use Raku with that package. First, setup it up as it's supposed to be per its README. Then, in Raku, write something like:
use Text::BibTeX::BibFormat:from<Perl5>;
...
#blocks = $entry.format;
Explanation of these two lines:
The first line is how you tell Raku that you wish to load a Perl module.
(It won't work unless Inline::Perl5 is already installed and working. But it should be if you're using a popular Raku bundle. And if not, you should at least have the module installer zef so you can run zef install Inline::Perl5.)
The last line is just a mechanical Raku translation of the #blocks = $entry->format; line from the SYNOPSIS of the Perl package Text::BibTeX::BibFormat.
A Raku grammar / parser
OK. Enough "boring" practical advice. Let's now try have some fun creating a grammar based Raku parser good enough for the example from your question.
► use glot.io to run the code below
unit grammar bib;
rule TOP { <article>* }
rule article { '#article{' $<id>=<-[,]>+ ','
<kv-pairs>
'}'
}
rule kv-pairs { <kv-pair>* % ',' }
rule kv-pair { $<key>=\w* '={' ~ '}' $<value>=<-[}]>* }
With this grammar in place, we can now write something like:
die "Use CommaIDE?" unless bib .parsefile: 'derm.bib';
for $<article> -> $/ { put "$<id>: $<kv-pairs><kv-pair>[0]<value>\n" }
to generate exactly the same output as the previous solutions.
When a match or parse fails, by default Raku just returns Nil, which is, well, rather terse feedback.
There are several nice debugging options to figure out what's going on with a regex or grammar, but the best option by far is to use CommaIDE's Grammar-Live-View.
If you haven't already installed and used Comma, you're missing one of the best parts of using Raku. The features built in to the free version of Comma ("Community Edition") include outstanding grammar development / tracing / debugging tools.
Explanation of the 'bib' grammar
unit grammar bib;
The unit declarator is used at the start of a source file to tell Raku that the rest of the file declares a named package of code of a particular type.
The grammar keyword specifies a grammar. A grammar is like a class, but contains named "rules" -- not just named methods, but also named regexs, tokens, and rules. A grammar also inherits a bunch of general purpose rules from a base grammar.
rule TOP {
Unless you specify otherwise, parsing methods (.parse and .parsefile) that are called on a grammar start by calling the grammar's rule named TOP (declared with a rule, token, regex, or method declarator).
As a, er, rule of thumb, if you don't know if you should be using a rule, regex, token, or method for some bit of parsing, use a token. (Unlike regex patterns, tokens don't risk pathological backtracking.)
But I've used a rule. Like token patterns, rules also avoid the pathological backtracking risk. But, in addition rules interpret some whitespace in the pattern to be significant, in a natural manner. (See this SO answer for precise details.)
rules are typically appropriate towards the top of the parse tree. (Tokens are typically appropriate towards the leaves.)
rule TOP { <article>* }
The space at the end of the rule (between the * and pattern closing }) means the grammar will match any amount of whitespace at the end of the input.
<article> invokes another named rule in this grammar.
Because it looks like one should allow for any number of articles per bib file, I added a * (zero or more quantifier) at the end of <article>*.
rule article { '#article{' $<id>=<-[,]>+ ','
<kv-pairs>
'}'
}
If you compare this article pattern with the ones I wrote for the earlier Raku rules based solutions, you'll see various changes:
Rule in original one-liner
Rule in this grammar
Kept pattern as simple as possible.
Introduced <kv-pairs> and closing }
No attempt to echo layout of your input.
Visually echoes your input.
<[...]> is the Raku syntax for a character class, like[...] in traditional regex syntax. It's more powerful, but for now all you need to know is that the - in <-[,]> indicates negation, i.e. the same as the ^ in the [^,] syntax of ye olde regex. So <-[,]>+ attempts a match of one or more characters, none of which are ,.
$<id>=<-[,]>+ tells Raku to attempt to match the quantified "atom" on the right of the = (i.e. the <-[,]>+ bit) and store the results at the key <id> within the current match object. The latter will be hung from a branch of the parse tree; we'll get to precisely where later.
rule kv-pairs { <kv-pair>* % ',' }
This pattern illustrates one of several convenient Raku regex features. It declares you want to match zero or more kv-pairs separated by commas.
(In more detail, the % regex infix operator requires that matches of the quantified atom on its left are separated by the atom on its right.)
rule kv-pair { $<key>=\w* '={' ~ '}' $<value>=<-[}]>* }
The new bit here is '={' ~ '}'. This is another convenient regex feature. The regex Tilde operator parses a delimited structure (in this case one with a ={ opener and } closer) with the bit between the delimiters matching the quantified regex atom on the right of the closer. This confers several benefits but the main one is that error messages can be clearer.
I could have used the ~ approach in the /.../ regex in the one-liner, and vice-versa. But I wanted this grammar solution to continue the progression toward illustrating "better practice" idioms.
Constructing / deconstructing the parse tree
for $<article> { put "$<id>: $<kv-pairs><kv-pair>[0]<value>\n" }`
$<article>, $<id> etc. refer to named match objects that are stored somewhere in the "parse tree". But how did they get there? And exactly where is "there"?
Returning to the top of the grammar:
rule TOP {
If a .parse is successful, a single 'TOP' level match object is returned. (After a parse is complete the variable $/ is also bound to that top match object.) During parsing a tree will have been formed by hanging other match objects off this top match object, and then others hung off those, and so on.
Addition of match objects to a parse tree is done by adding either a single generated match object, or a list of them, to either a Positional (numbered) or Associative (named) capture of a "parent" match object. This process is explained below.
rule TOP { <article>* }
<article> invokes a match of the rule named article. An invocation of the rule <article> has two effects:
Raku tries to match the rule.
If it matches, Raku captures that match by generating a corresponding match object and adding it to the parse tree under the key <article> of the parent match object. (In this case the parent is the top match object.)
If the successfully matched pattern had been specified as just <article>, rather than as <article>*, then only one match would have been attempted, and only one value, a single match object, would have been generated and added under the key <article>.
But the pattern was <article>*, not merely <article>. So Raku attempts to match the article rule as many times as it can. If it matches at all, then a list of one or more match objects is stored as the value of the <article> key. (See my answer to "How do I access the captures within a match?" for a more detailed explanation.)
$<article> is short for $/<article>. It refers to the value stored under the <article> key of the current match object (which is stored in $/). In this case that value is a list of 3 match objects corresponding to the 3 articles in the input.
rule article { '#article{' $<id>=<-[,]>+ ','
Just as the top match object has several match objects hung off of it (the three captures of article matches that are stored under the top match object's <article> key), so too do each of those three article match objects have their own "child" match objects hanging off of them.
To see how that works, let's consider just the first of the three article match objects, the one corresponding to the text that starts "#article{garg2017patch,...". The article rule matches this article. As it's doing that matching, the $<id>=<-[,]>+ part tells Raku to store the match object corresponding to the id part of the article ("garg2017patch") under that article match object's <id> key.
Hopefully this is enough (quite possibly way too much!) and I can at last exhaustively (exhaustingly?) explain the last line of code, which, once again, was:
for $<article> -> $/ { put "$<id>: $<kv-pairs><kv-pair>[0]<value>\n" }`
At the level of the for, the variable $/ refers to the top of the parse tree generated by the parse that just completed. Thus $<article>, which is shorthand for $/<article>, refers to the list of three article match objects.
The for then iterates over that list, binding $/ within the lexical scope of the -> $/ { ... } block to each of those 3 article match objects in turn.
The $<id> bit is shorthand for $/<id>, which inside the block refers to the <id> key within the article match object that $/ has been bound to. In other words, $<id> inside the block is equivalent to $<article><id> outside the block.
The $<kv-pairs><kv-pair>[0]<value> follows the same scheme, albeit with more levels and a positional child (the [0]) in the midst of all the key (named/ associative) children.
(Note that there was no need for the article pattern to include a $<kv-pairs>=<kv-pairs> because Raku just presumes a pattern of the form <foo> should store its results under the key <foo>. If you wish to disable that, write a pattern with a non-alpha character as the first symbol. For example, use <.foo> if you want to have exactly the same matching effect as <foo> but just not store the matched input in the parse tree.)
Phew!
When the automatically generated parse tree isn't what you want
As if all the above were not enough, I need to mention one more thing.
The parse tree strongly reflects the tree structure of the grammar's rules calling one another from the top rule down to leaf rules. But the resulting structure is sometimes inconvenient.
Often one still wants a tree, but a simpler one, or perhaps some non-tree data structure.
The primary mechanism for generating exactly what you want from a parse, when the automatic results aren't suitable, is make. (This can be used in code blocks inside rules or factored out into Action classes that are separate from grammars.)
In turn, the primary use case for make is to generate a sparse tree of nodes hanging off the parse tree, such as an AST.
Footnotes
[1] Basic Raku is good for exploratory programming, spikes, one-offs, PoCs and other scenarios where the emphasis is on quickly producing working code that can be refactored later if need be.
[2] Raku's regexes/rules scale up to arbitrary parsing, as introduced in the latter half of this answer. This contrasts with past generations of regex which could not.[3]
[3] That said, ZA̡͊͠͝LGΌ ISͮ̂҉̯͈͕̹̘̱ TO͇̹̺ͅƝ̴ȳ̳ TH̘Ë͖́̉ ͠P̯͍̭O̚N̐Y̡ remains a great and relevant read. Not because Raku rules can't parse (X)HTML. In principle they can. But for a task as monumental as correctly handling full arbitrary in-the-wild XHTML I would strongly recommend you use an existing parser written expressly for that purpose. And this applies generally for existing formats; it's best not to reinvent the wheel. But the good news with Raku rules is that if you need to write a full parser, not just a bunch of regexes, you can do so, and it need not involve going insane!
I'm trying to write a predictive editor for a grammar written in Rascal. The heart of this would be a function taking as input a list of symbols and returning as output a list of symbol types, such that an instance of any of those types would be a syntactically legal continuation of the input symbols under the grammar. So if the input list was [4,+] the output might be [integer]. Is there a clever way to do this in Rascal? I can think of imperative programming ways of doing it, but I suspect they don't take proper advantage of Rascal's power.
That's a pretty big question. Here's some lead to an answer but the full answer would be implementing it for you completely :-)
Reify an original grammar for the language you are interested in as a value using the # operator, so that you have a concise representation of the grammar which can be queried easily. The representation is defined over the modules Type, ParseTree which extends Type and Grammar.
Construct the same representation for the input query. This could be done in many ways. A kick-ass, language-parametric, way would be to extend Rascal's parser algorithm to return partial trees for partial input, but I believe this would be too much hassle now. An easier solution would entail writing a grammar for a set of partial inputs, i.e. the language grammar with at specific points shorter rules. The grammar will be ambiguous but that is not a problem in this case.
Use tags to tag the "short" rules so that you can find them easily later: syntax E = #short E "+";
Parse with the extended and now ambiguous grammar;
The resulting parse trees will contain the same representation as in ParseTree that you used to reify the original grammar, except in that one the rules are longer, as in prod(E, [E,+,E],...)
then select the trees which serve you best for the goal of completion (which use the #short tag), and extract their productions "prod", which look like this prod(E,[E,+],...). For example using the / operator: [candidate : /candidate:prod(_,_,/"short") := trees], and you could use a cursor position to find candidates which are close by instead of all short trees in there.
Use list matching to find prefixes in the original grammar, like if (/match:prod(_,[*prefix, predicted, *postfix],_) := grammar) ..., prefix is your query as extracted from the #short rules. predicted is your answer and postfix is whatever would come after.
yield the predicted symbol back as a type for the user to read: "<type(predicted, ())>" (will pretty print it nicely even if it's some complex regexp type and does the quoting right etc.)
I'm looking for a mature parser library, either for Scala or Haskell.
The most important point is, that the library can handle ambiguity.
If an expression is ambiguous, I want every possible abstract syntax tree, that matches the expression.
Simple example: The expression a ⊗ b ⊗ c can be seen as (a ⊗ b) ⊗ c or a ⊗ (b ⊗ c), and I need both variants.
Thanks!
I feel like the old guy for remembering when Walder's papers like Comprehending Monads (the precursor to the do notation) were exciting and new. The idea is that you (to quote) replace a failure by a list of successes, meaning maintain a list of all the possible parses. At the end you normally just take the first match, but with this setup, you can take all of them.
These aren't all that efficient for a deterministic parser, which is why they're less in fashion, but they are what you need.
Have a look at polyparse, and in particular Text.ParserCombinators.HuttonMeijer and Text.ParserCombinators.HuttonMeijerWallace.
(Hutton & Meijer translated the parser library to Haskell (from Gofer) and Wallace added extra features.)
Make sure you check it out on simple cases like parsing "aaaa" with
testP = do
a <- many $ char 'a'
b <- many $ char 'a'
return (a,b)
to see if it has the semantics you seek.
You asked for mature. These libraries are part of pure functional programming's heritage! Having said that, I'd call parsec more mature, even though it's younger.
(Speculation: I don't think parsec can do what you want. Its standard choice combinator is deterministic. I haven't looked into tweaking or replacing that behaviour, and I wouldn't want to I'm afraid.)
This question immediately reminded me of the Yacc is dead / No, it's not debate from the end of 2010. The authors of the Yacc is dead paper provide a library in Scala (unmaintained), Haskell and Racket. In the Yacc is alive response, Russ Cox points out that the code runs in exponential time for ambiguous grammars.
It's well-known that it is possible to parse ambiguous grammars in O(n^3), although obviously it can take exponential time to enumerate all the parse trees in the case that there are exponentially many of them -- and there will be in the case of x1 + x2 + x3 ... + xn. bison implements the GLR algorithm which does so; unfortunately, while bison is certainly mature (if not actually moribund), it is written neither in Haskell nor in Scala.
Daniel Spiewak implemented a GLL parser in Scala IIRC, but last time I looked at it, it suffered from some performance issues. So I'm not sure that it could be described as mature, either.
I can't speak to how mature it is or give you any usage examples, but I've had the scala gll-combinators library open in a tab for a few days. It handles ambiguous grammars and looks pretty nifty.
At the end the the choice fell on the Syntax Definition Formalism (SDF2)
with an sdf table generator here
and JSGLR as parser generator.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 6 years ago.
Improve this question
I am a college student getting my Computer Science degree. A lot of my fellow students really haven't done a lot of programming. They've done their class assignments, but let's be honest here those questions don't really teach you how to program.
I have had several other students ask me questions about how to parse things, and I'm never quite sure how to explain it to them. Is it best to start just going line by line looking for substrings, or just give them the more complicated lecture about using proper lexical analysis, etc. to create tokens, use BNF, and all of that other stuff? They never quite understand it when I try to explain it.
What's the best approach to explain this without confusing them or discouraging them from actually trying.
I'd explain parsing as the process of turning some kind of data into another kind of data.
In practice, for me this is almost always turning a string, or binary data, into a data structure inside my Program.
For example, turning
":Nick!User#Host PRIVMSG #channel :Hello!"
into (C)
struct irc_line {
char *nick;
char *user;
char *host;
char *command;
char **arguments;
char *message;
} sample = { "Nick", "User", "Host", "PRIVMSG", { "#channel" }, "Hello!" }
Parsing is the process of analyzing text made of a sequence of tokens to determine its grammatical structure with respect to a given (more or less) formal grammar.
The parser then builds a data structure based on the tokens. This data structure can then be used by a compiler, interpreter or translator to create an executable program or library.
(source: wikimedia.org)
If I gave you an english sentence, and asked you to break down the sentence into its parts of speech (nouns, verbs, etc.), you would be parsing the sentence.
That's the simplest explanation of parsing I can think of.
That said, parsing is a non-trivial computational problem. You have to start with simple examples, and work your way up to the more complex.
What is parsing?
In computer science, parsing is the process of analysing text to determine if it belongs to a specific language or not (i.e. is syntactically valid for that language's grammar). It is an informal name for the syntactic analysis process.
For example, suppose the language a^n b^n (which means same number of characters A followed by the same number of characters B). A parser for that language would accept AABB input and reject the AAAB input. That is what a parser does.
In addition, during this process a data structure could be created for further processing. In my previous example, it could, for instance, to store the AA and BB in two separate stacks.
Anything that happens after it, like giving meaning to AA or BB, or transform it in something else, is not parsing. Giving meaning to parts of an input sequence of tokens is called semantic analysis.
What isn't parsing?
Parsing is not transform one thing into another. Transforming A into B, is, in essence, what a compiler does. Compiling takes several steps, parsing is only one of them.
Parsing is not extracting meaning from a text. That is semantic analysis, a step of the compiling process.
What is the simplest way to understand it?
I think the best way for understanding the parsing concept is to begin with the simpler concepts. The simplest one in language processing subject is the finite automaton. It is a formalism to parsing regular languages, such as regular expressions.
It is very simple, you have an input, a set of states and a set of transitions. Consider the following language built over the alphabet { A, B }, L = { w | w starts with 'AA' or 'BB' as substring }. The automaton below represents a possible parser for that language whose all valid words starts with 'AA' or 'BB'.
A-->(q1)--A-->(qf)
/
(q0)
\
B-->(q2)--B-->(qf)
It is a very simple parser for that language. You start at (q0), the initial state, then you read a symbol from the input, if it is A then you move to (q1) state, otherwise (it is a B, remember the remember the alphabet is only A and B) you move to (q2) state and so on. If you reach (qf) state, then the input was accepted.
As it is visual, you only need a pencil and a piece of paper to explain what a parser is to anyone, including a child. I think the simplicity is what makes the automata the most suitable way to teaching language processing concepts, such as parsing.
Finally, being a Computer Science student, you will study such concepts in-deep at theoretical computer science classes such as Formal Languages and Theory of Computation.
Have them try to write a program that can evaluate arbitrary simple arithmetic expressions. This is a simple problem to understand but as you start getting deeper into it a lot of basic parsing starts to make sense.
Parsing is about READING data in one format, so that you can use it to your needs.
I think you need to teach them to think like this. So, this is the simplest way I can think of to explain parsing for someone new to this concept.
Generally, we try to parse data one line at a time because generally it is easier for humans to think this way, dividing and conquering, and also easier to code.
We call field to every minimum undivisible data. Name is field, Age is another field, and Surname is another field. For example.
In a line, we can have various fields. In order to distinguish them, we can delimit fields by separators or by the maximum length assign to each field.
For example:
By separating fields by comma
Paul,20,Jones
Or by space (Name can have 20 letters max, age up to 3 digits, Jones up to 20 letters)
Paul 020Jones
Any of the before set of fields is called a record.
To separate between a delimited field record we need to delimit record. A dot will be enough (though you know you can apply CR/LF).
A list could be:
Michael,39,Jordan.Shaquille,40,O'neal.Lebron,24,James.
or with CR/LF
Michael,39,Jordan
Shaquille,40,O'neal
Lebron,24,James
You can say them to list 10 nba (or nlf) players they like. Then, they should type them according to a format. Then make a program to parse it and display each record. One group, can make list in a comma-separated format and a program to parse a list in a fixed size format, and viceversa.
Parsing to me is breaking down something into meaningful parts... using a definable or predefined known, common set of part "definitions".
For programming languages there would be keyword parts, usable punctuation sequences...
For pumpkin pie it might be something like the crust, filling and toppings.
For written languages there might be what a word is, a sentence, what a verb is...
For spoken languages it might be tone, volume, mood, implication, emotion, context
Syntax analysis (as well as common sense after all) would tell if what your are parsing is a pumpkinpie or a programming language. Does it have crust? well maybe it's pumpkin pudding or perhaps a spoken language !
One thing to note about parsing stuff is there are usually many ways to break things into parts.
For example you could break up a pumpkin pie by cutting it from the center to the edge or from the bottom to the top or with a scoop to get the filling out or by using a sledge hammer or eating it.
And how you parse things would determine if doing something with those parts will be easy or hard.
In the "computer languages" world, there are common ways to parse text source code. These common methods (algorithims) have titles or names. Search the Internet for common methods/names for ways to parse languages. Wikipedia can help in this regard.
In linguistics, to divide language into small components that can be analyzed. For example, parsing this sentence would involve dividing it into words and phrases and identifying the type of each component (e.g.,verb, adjective, or noun).
Parsing is a very important part of many computer science disciplines. For example, compilers must parse source code to be able to translate it into object code. Likewise, any application that processes complex commands must be able to parse the commands. This includes virtually all end-user applications.
Parsing is often divided into lexical analysis and semantic parsing. Lexical analysis concentrates on dividing strings into components, called tokens, based on punctuationand other keys. Semantic parsing then attempts to determine the meaning of the string.
http://www.webopedia.com/TERM/P/parse.html
Simple explanation: Parsing is breaking a block of data into smaller pieces (tokens) by following a set of rules (using delimiters for example),
so that this data could be processes piece by piece (managed, analysed, interpreted, transmitted, ets).
Examples: Many applications (like Spreadsheet programs) use CSV (Comma Separated Values) file format to import and export data. CSV format makes it possible for the applications to process this data with a help of a special parser.
Web browsers have special parsers for HTML and CSS files. JSON parsers exist. All special file formats must have some parsers designed specifically for them.
I am looking for a clear definition of what a "tokenizer", "parser" and "lexer" are and how they are related to each other (e.g., does a parser use a tokenizer or vice versa)? I need to create a program will go through c/h source files to extract data declaration and definitions.
I have been looking for examples and can find some info, but I really struggling to grasp the underlying concepts like grammar rules, parse trees and abstract syntax tree and how they interrelate to each other. Eventually these concepts need to be stored in an actual program, but 1) what do they look like, 2) are there common implementations.
I have been looking at Wikipedia on these topics and programs like Lex and Yacc, but having never gone through a compiler class (EE major) I am finding it difficult to fully understand what is going on.
A tokenizer breaks a stream of text into tokens, usually by looking for whitespace (tabs, spaces, new lines).
A lexer is basically a tokenizer, but it usually attaches extra context to the tokens -- this token is a number, that token is a string literal, this other token is an equality operator.
A parser takes the stream of tokens from the lexer and turns it into an abstract syntax tree representing the (usually) program represented by the original text.
Last I checked, the best book on the subject was "Compilers: Principles, Techniques, and Tools" usually just known as "The Dragon Book".
Example:
int x = 1;
A lexer or tokeniser will split that up into tokens 'int', 'x', '=', '1', ';'.
A parser will take those tokens and use them to understand in some way:
we have a statement
it's a definition of an integer
the integer is called 'x'
'x' should be initialised with the value 1
I would say that a lexer and a tokenizer are basically the same thing, and that they smash the text up into its component parts (the 'tokens'). The parser then interprets the tokens using a grammar.
I wouldn't get too hung up on precise terminological usage though - people often use 'parsing' to describe any action of interpreting a lump of text.
(adding to the given answers)
Tokenizer will also remove any comments, and only return tokens to the Lexer.
Lexer will also define scopes for those tokens (variables/functions)
Parser then will build the code/program structure
Using
"Compilers Principles, Techniques, & Tools, 2nd Ed." (WorldCat) by Aho, Lam, Sethi and Ullman, AKA the Purple Dragon Book
a related answer of mine What is the difference between a token and a lexeme?
As with my other answer such questions as this make more sense when a specific goal is desired.
In your case the specific goal is
Create a program will go through c/h source files to extract data declaration and definitions.
If the goal is to create Abstract Syntax Trees (AST) then those are created using a Parser and a Parser is commonly feed a list of Tokens from the Lexer. Notice that Tokenizer is deliberately not mentioned.
Another way to think of the relation between a Lexer and Parser is that a Lexer creates a linear structure (list/stream of tokens) and a Parser converts the tokens into an tree structure (Abstract Syntax Tree).
If you read the Dragon book you will notice that the word Analysis appears often which is to say that analysis is one of the key functions at the various stages. This is because when working with Lexers and Parsers they are designed to work with formal languages and a determination needs to be made if the input adheres to the formal language.
From page 5
character stream
|
V
Lexical Analyzer
(token stream)
|
V
Syntax Analyzer
(syntax tree)
|
V
Semantic Analyzer
(syntax tree)
|
V
...
In the above diagram the Lexer is associated with Lexical Analyzer and I would associate Syntax Analyzer and Semantic Analyzer with Parser but YMMV.
AFAIK Tokenizer has no official definition in the Dragon book, not even noted in the index. I don't have an electronic copy of the book so could not do an automated search.
One common reference that notes Tokenizer is Anatomy of a Compiler but the Dragon books are the reference of choice by many in the field.
However if your only goal is to create a list of tokens and then do something else other than semantic analysis then calling the module/function/... a tokenizer might be the right name.
I use Lexer with Parser and don't use Tokenizer with Parser.
Another thought to keep in mind is that if no useful information should be lost in the transformations. In other words if one of your goals is to be able to recreate the input from the AST then the AST needs to capture the extraneous information like whitespace, which then means the Lexer also needs to capture the extraneous information. One reason to go through such effort is to create useful error messages or for Edit code and continue Debugging.