Projecting from 60D (shape context) space to 2D for visual analysis - machine-learning

I have a set of 60D shape context vectors. These were constructed using a sample of 400 edge points from a silhouette using 5 radial bins and 12 angular bins (thus, I have 400 shape context vectors of 60D).
I would like to analyse just how descriptive these vectors are in representing the overall shape of the underlying silhouette. To do this, I would like to project the 60D shape context vectors back into 2D space and visually inspect the result -- what I am hoping to see is a set of points that roughly resemble the original silhouette's shape.
An approach to do this is by projecting on the first two principal components (PCA). Based on my implementation, the projected points did not resemble the silhouette's shape. I can see two main reasons for this (assuming for the time being that my implementation is correct): (1) shape context is either not appropriate as a descriptor given the silhouettes, or it's parameters need to be better tuned (2) this analysis method is flawed / not valid.
My question is whether this is the right approach for analysing the descriptiveness of shape contexts in relation to my silhouette's shape? If not, can someone please explain why and propose an alternative method?
Thanks,
Josh

The good way to check whether features are descriptive or not is to try train some classifier(svm/bayes/tree/whatever) upon them and check it cross-validated precision/recall etc. You also can filter your feature vector by feature selector like Chi/infogain.
Other than PCA, you can visualize your data with SOM, or by clustering.

I think this analysis method is flawed/not valid. I think this would be a similar reasoning: I can reconstruct the view from above on a football field by doing PCA on what each football player sees. It just isn't reasonable to expect that.
I think the simplest way to analyze the descriptiveness of shape context is to download MNIST or some other databases of written digits, and compute the 10x10 matrix of the shape similarities of 5 ones and 5 twos, and then draw this graph using (say) graphviz.

Related

Reconstructing a non-planar polygon in 3D given a 2d projection and known polygon dimensions

I have a non-planar object with 9 points with known dimensions in 3D i.e. length of all sides is known. Now given a 2D projection of this shape, I want to reconstruct the 3D model of it. I basically want to retrieve the shape of this object in the real world i.e. angles between different sides in 3D. For eg: given all the dimensions of every part of the table and a 2D image, I'm trying to reconstruct its 3D model.
I've read about homography, perspective transform, procrustes and fundamental/essential matrix so far but haven't found a solution that'll apply here. I'm new to this, so might have missed out something. Any direction on this will be really helpful.
In your question, you mention that you want to achieve this using only a single view of the object. In that case, homographies or Essential/Fundamental matrices wont help you, because these require at least two views of the scene to make sense. If you don't have any priors on the shape of the objects that you want to reconstruct, the key information that you'll be missing is (relative) depth, and in that case I think those are the two possible solutions:
Leverage a learning algorithm. There is a rich literature on 6dof object pose estimation with deep networks, see this paper for example. You wont have to deal with depth directly if you use those since those networks are trained end to end to estimate a pose in SO(3).
Add many more images and use a dense photometric SLAM/SFM pipeline, such as elastic fusion. However, in that case you will need to segment the resulting models since the estimation they produce is of the entire environment, which can be difficult depending on the scene.
However, as you mentioned in your comment, it is possible to reconstruct the model up to scale if you have very strong priors on its geometry. In the case of a planar object (a cuboid will just be an extension of that), you can use this simple algorithm (that is more or less what they do here, there are other methods but I find them a bit messy, equation-wise):
//let's note A,B,C,D the rectangle in 3d that we are after, such that
//AB is parellel with CD. Let's also note a,b,c,d their respective
//reprojections in the image, i.e. a=KA where K is the calibration matrix, and so on.
1) Compute the common vanishing point of AB and CD. This is just the intersection
of ab and cd in the image plane. Let's call it v_1.
2) Do the same for the two other edges, i.e bc and da. Let's call this
vanishing point v_2.
3) Now, you can compute the vanishing line, which will just be
crossproduct(v_1, v_2), i.e. the line going through both v_1 and v_2. This gives
you the orientation of your plane. Let's write its normal N.
5) All you need to find now is the boundaries of the rectangle. To do
that, just consider any plane with normal N that doesn't go through
the camera center. Now find the intersections of K^{-1}a, K^{-1}b,
K^{-1}c, K^{-1}d with that plane.
If you need a refresher on vanishing points and lines, I suggest you take a look at pages 213 and 216 of Hartley-Zisserman's book.

CNN Object Localization Preprocessing?

I'm trying to use a pretrained VGG16 as an object localizer in Tensorflow on ImageNet data. In their paper, the group mentions that they basically just strip off the softmax layer and either toss on a 4D/4000D fc layer for bounding box regression. I'm not trying to do anything fancy here (sliding windows, RCNN), just get some mediocre results.
I'm sort of new to this and I'm just confused about the preprocessing done here for localization. In the paper, they say that they scale the image to 256 as its shortest side, then take the central 224x224 crop and train on this. I've looked all over and can't find a simple explanation on how to handle localization data.
Questions: How do people usually handle the bounding boxes here?...
Do you use something like the tf.sample_distorted_bounding_box command, and then rescale the image based on that?
Do you just rescale/crop the image itself, and then interpolate the bounding box with the transformed scales? Wouldn't this result in negative box coordinates in some cases?
How are multiple objects per image handled?
Do you just choose a single bounding box from the beginning ,crop to that, then train on this crop?
Or, do you feed it the whole (centrally cropped) image, and then try to predict 1 or more boxes somehow?
Does any of this generalize to the Detection or segmentation (like MS-CoCo) challenges, or is it completely different?
Anything helps...
Thanks
Localization is usually performed as an intersection of sliding windows where the network identifies the presence of the object you want.
Generalizing that to multiple objects works the same.
Segmentation is more complex. You can train your model on a pixel mask with your object filled, and you try to output a pixel mask of the same size

Shape features from canny edge detection

I am trying to implement Canny edge detection found hereCanny edge to differentiate objects based on their shapes. I would like to know what are the features? I need to find a score/metric so that I can define a probability from information like mean of the shape. The purpose is to differentiate between objects of different shapes. So, lets assume that the mean shape(x) of Object1 and Object2 are x1,x2 and the standard deviation(s) is s1,s2 respectively. From what do I calculate these information and How do I find these information?
Canny Algorithm is an edge detector. It searches for high frequencies in the image by computing the magnitude of the derivatives in x and y direction. In the end of you have contours of objects. What you are trying to do is to classify objects and using Canny does not sound like a right way to do it, I am not saying you cannot build features out of edges, but it might perform poorly.
In order to achieve what you want, you need first to identify what features are important for you. You mentioned the shape but is the color a good feature for the class of objects you are trying to find? Your pictures show very colorful objects. Are you only trying to distinguish one object to the other (considering the images only display only the object of interest) or do you want locate them in the screen? Does the image contain only one object or multiple ones?
I will give you some direction regarding feature modeling.
If color is a strong information for your objects, you could model your features using histogram information, compute n bins for all objects and store the distribution of the bins as a feature vector. You can use HOG.
Another possible (naive) solution is to compute all colors of patches (e.g. 7x7) belonging to each object and to compute later the histogram over patches instead of single pixels.
If you are not satisfied with color information and you would like to differentiate objects by comparing information in their neighborhood, you can use local binary patterns, which might be enough for the type of information you have.
Once you decide on the features which are important and modeled them, you can go for the classification (which is gonna determine which object you are seeing given a certain feature).
A probabilistic framework tries to estimate the posterior probability P(X|C), i.e. what is the probability of being object X given that we observed C (C could be your feature) and this is very powerful. You might consider reading about Maximum Likelihood Estimation and Maximum a posteriori. Also, a Naive Bayes classifier is a simple off the shelf algorithm available on Opencv that you could use.
You could use many other algorithms, such as SVM, Boost, Decision Trees, Neural Networks and so on. Bag of visual words is also a nice alternative.
If you are interested how to separate the object of interest from the background you are talking about image segmentation, you can look at K-Means or more powerfully Graph Cuts techniques. Of course you can always segment first and then classify the segmented blobs.
Samuel

Finding simple shapes in 2D point clouds

I am currently looking for a way to fit a simple shape (e.g. a T or an L shape) to a 2D point cloud. What I need as a result is the position and orientation of the shape.
I have been looking at a couple of approaches but most seem very complicated and involve building and learning a sample database first. As I am dealing with very simple shapes I was hoping that there might be a simpler approach.
By saying you don't want to do any training I am guessing that you mean you don't want to do any feature matching; feature matching is used to make good guesses about the pose (location and orientation) of the object in the image, and would be applicable along with RANSAC to your problem for guessing and verifying good hypotheses about object pose.
The simplest approach is template matching, but this may be too computationally complex (it depends on your use case). In template matching you simply loop over the possible locations of the object and its possible orientations and possible scales and check how well the template (a cloud that looks like an L or a T at that location and orientation and scale) matches (or you sample possible locations orientations and scales randomly). The checking of the template could be made fairly fast if your points are organised (or you organise them by e.g. converting them into pixels).
If this is too slow there are many methods for making template matching faster and I would recommend to you the Generalised Hough Transform.
Here, before starting the search for templates you loop over the boundary of the shape you are looking for (T or L) and for each point on its boundary you look at the gradient direction and then the angle at that point between the gradient direction and the origin of the object template, and the distance to the origin. You add that to a table (Let us call it Table A) for each boundary point and you end up with a table that maps from gradient direction to the set of possible locations of the origin of the object. Now you set up a 2D voting space, which is really just a 2D array (let us call it Table B) where each pixel contains a number representing the number of votes for the object in that location. Then for each point in the target image (point cloud) you check the gradient and find the set of possible object locations as found in Table A corresponding to that gradient, and then add one vote for all the corresponding object locations in Table B (the Hough space).
This is a very terse explanation but knowing to look for Template Matching and Generalised Hough transform you will be able to find better explanations on the web. E.g. Look at the Wikipedia pages for Template Matching and Hough Transform.
You may need to :
1- extract some features from the image inside which you are looking for the object.
2- extract another set of features in the image of the object
3- match the features (it is possible using methods like SIFT)
4- when you find a match apply RANSAC algorithm. it provides you with transformation matrix (including translation, rotation information).
for using SIFT start from here. it is actually one of the best source-codes written for SIFT. It includes RANSAC algorithm and you do not need to implement it by yourself.
you can read about RANSAC here.
Two common ways for detecting the shapes (L, T, ...) in your 2D pointcloud data would be using OpenCV or Point Cloud Library. I'll explain steps you may take for detecting those shapes in OpenCV. In order to do that, you can use the following 3 methods and the selection of the right method depends on the shape (Size, Area of the shape, ...):
Hough Line Transformation
Template Matching
Finding Contours
The first step would be converting your point to a grayscale Mat object, by doing that you basically make an image of your 2D pointcloud data and so you can use other OpenCV functions. Then you may smooth the image in order to reduce the noises and the result would be somehow a blurry image which contains real edges, if your application does not need real-time processing, you can use bilateralFilter. You can find more information about smoothing here.
The next step would be choosing the method. If the shape is just some sort of orthogonal lines (such as L or T) you can use Hough Line Transformation in order to detect the lines and after detection, you can loop over the lines and calculate the dot product of the lines (since they are orthogonal the result should be 0). You can find more information about Hough Line Transformation here.
Another way would be detecting your shape using Template Matching. Basically, you should make a template of your shape (L or T) and use it in matchTemplate function. You should consider that the size of the template you want to use should be in the order of your image, otherwise you may resize your image. More information about the algorithm can be found here.
If the shapes include areas you can find contours of the shape using findContours, it will give you the number of polygons which are around your shape you want to detect. For instance, if your shape is L, it would have polygon which has roughly 6 lines. Also, you can use some other filters along with findContours such as calculating the area of the shape.

How to match texture similarity in images?

What are the ways in which to quantify the texture of a portion of an image? I'm trying to detect areas that are similar in texture in an image, sort of a measure of "how closely similar are they?"
So the question is what information about the image (edge, pixel value, gradient etc.) can be taken as containing its texture information.
Please note that this is not based on template matching.
Wikipedia didn't give much details on actually implementing any of the texture analyses.
Do you want to find two distinct areas in the image that looks the same (same texture) or match a texture in one image to another?
The second is harder due to different radiometry.
Here is a basic scheme of how to measure similarity of areas.
You write a function which as input gets an area in the image and calculates scalar value. Like average brightness. This scalar is called a feature
You write more such functions to obtain about 8 - 30 features. which form together a vector which encodes information about the area in the image
Calculate such vector to both areas that you want to compare
Define similarity function which takes two vectors and output how much they are alike.
You need to focus on steps 2 and 4.
Step 2.: Use the following features: std() of brightness, some kind of corner detector, entropy filter, histogram of edges orientation, histogram of FFT frequencies (x and y directions). Use color information if available.
Step 4. You can use cosine simmilarity, min-max or weighted cosine.
After you implement about 4-6 such features and a similarity function start to run tests. Look at the results and try to understand why or where it doesnt work. Then add a specific feature to cover that topic.
For example if you see that texture with big blobs is regarded as simmilar to texture with tiny blobs then add morphological filter calculated densitiy of objects with size > 20sq pixels.
Iterate the process of identifying problem-design specific feature about 5 times and you will start to get very good results.
I'd suggest to use wavelet analysis. Wavelets are localized in both time and frequency and give a better signal representation using multiresolution analysis than FT does.
Thre is a paper explaining a wavelete approach for texture description. There is also a comparison method.
You might need to slightly modify an algorithm to process images of arbitrary shape.
An interesting approach for this, is to use the Local Binary Patterns.
Here is an basic example and some explanations : http://hanzratech.in/2015/05/30/local-binary-patterns.html
See that method as one of the many different ways to get features from your pictures. It corresponds to the 2nd step of DanielHsH's method.

Resources