Extending the Indexer for an existing class - f#

Suppose I have type A with indexer implemented, e.g. type A is a library. Now I want to extend the indexer of it, e.g. here I want to add float number into the indexer.
I worked out the following code:
type A(a:int array) =
member this.Item
with get(x) = a.[x]
and set(x) value = a.[x] <- value
type A with
member m.Item with
get(x:float) = m.[x |> int]
and set(x:float) v = m.[x |> int] <- v
But it seems not working:
let a = A([| 1;2;3 |])
a.[1]
a.[1] <- 10
a.[1.0]
For the last line, I get:
Script1.fsx(243,4): error FS0001: This expression was expected to have type
int
but here has type
float
Is extending indexer possible in F#? Thanks!

This behaves differently when the type extension is defined in a separate assembly (or separate module) and when it is in the same module as the type definition.
When both are in the same module, F# compiles them into a single class and Item becomes a standard overloaded indexer - In this case, your code works as expected (and this is how you actually wrote it here).
When they are in separate modules, F# compiles the indexer as an extension member. In this case, I get the error message you described.
Adding new overloads using extension members (e.g. new method) is possible. As far I can see, the specificaton doesn't say that this shouldn't work for indexers, so I think it is a bug (can you report it to fsbugs at microsoft dot com?)

I just tried this in FSI and it seems to work.
What compiler are you using?
This is what I fed to FSI:
type A(a:int array) =
member this.Item
with get(x) = a.[x]
and set(x) value = a.[x] <- value
type A with
member m.Item
with get(x:float) = m.[x |> int]
and set(x:float) v = m.[x |> int] <- v
let a = A([| 1;2;3 |])
a.[1] <- 10
printfn "%A" a.[1.2]
This prints '10'

Related

Unexpected keyword 'val' in definition

Learning F# as part of my course, and can do some cool things, but something has been bugging me, whenever I use the val keyword, I get an error. I think it could be due to not declaring something in script, but I don't really know.
module Prime
#light
let nums = [1; 2; 3; 4; 5];;
val nums : list<int>
let rec sum list =
match list with
| h::tail -> (sum tail) + h
| [] -> 0
val sum : list<int> -> int
I get (line 5):
Error 1 Unexpected keyword 'val' in definition . Expected incomplete structured construct at or before this point or other token
Any ideas?
The val keyword in F# (unlike 'val' in ML) is used to declare a field in a class or structure type without initializing it.
http://msdn.microsoft.com/en-us/library/dd469494.aspx
if you want to define mutable value in the Module you can use
let mutable...
By the way, if you define the value with the same name (like 'nums') twice or more times then the effective value for the compiler will be latest defined in the scope.
So actually, I had misread the coursework set out, annoyingly the papers use val to define what the expected output of the function is, as opposed to using it as the keyword it is meant to be. Hence my confusion and lots of head scratching.
This looks like F# interactive output mixed in with code.
If I type this into FSI:
let nums = [1; 2; 3; 4; 5];;
The output is
val nums : int list = [1; 2; 3; 4; 5]
Note that ;; is where FSI parses and runs input. You wouldn't have this in non-interactive code. The output might differ because of an older version or editing, but nontheless, it doesn't belong in code.
Coincidentally, val is also a rarely used F# keyword for explicit fields. Hence the strange error message.
The val keyword is used to declare a field ; it must be used inside a type definition (class or structure). Since in your code the variable nums is already defined and as the list type inferred by F# type inference engine, there is no need for your val line.
An example of val keyword usage is (from msdn) :
type MyType() =
let mutable myInt1 = 10
[<DefaultValue>] val mutable myInt2 : int
[<DefaultValue>] val mutable myString : string
member this.SetValsAndPrint( i: int, str: string) =
myInt1 <- i
this.myInt2 <- i + 1
this.myString <- str
printfn "%d %d %s" myInt1 (this.myInt2) (this.myString)

IEnumerable and array comprehension

I wonder why the second line reports a compiler error
the type Relations is not compatible with seq<'a>
while the first infers a type Relation for r.
type Microsoft.Office.Interop.Access.Dao.Database with
member x.f() =
let relations = [for r in x.Relations -> r]
let relations2 = x.Relations |> Seq.map id
()
What precise property makes it possible to loop over Relations using for?
// Edit reproduction step :
I create a blank solution in VS2012, add a reference to Microsoft.Office.Interop.Access.Dao, and paste the code below.
module toto =
type Class1() =
member this.X = "F#"
type Microsoft.Office.Interop.Access.Dao.Database with
member x.f() =
let relations = [for r in x.Relations -> r]
let relations2 = x.Relations |> Seq.map id
()
r is typed as Relation, and not obj
This doesn't entirely mesh with what you've said, but one scenario in which a sequence expression would work but not Seq.map is when a type implements System.Collections.IEnumerable but not System.Collections.Generic.IEnumerable<'T> (aka seq<'T>). For example, in this code t is inferred as obj list, but the next line doesn't compile.
type T() =
interface System.Collections.IEnumerable with
member x.GetEnumerator() = (Seq.init 10 id).GetEnumerator() :> _
let t = [for x in T() -> x]
let t2 = T() |> Seq.map id //ERROR: The type 'T' is not compatible with the type 'seq<'a>'
This scenario is especially common for libraries created prior to .NET 2.0.

error with f# generic follow Expert Fsharp book example

I'm reading Expert F# book and I found this code
open System.Collections.Generic
let divideIntoEquivalenceClasses keyf seq =
// The dictionary to hold the equivalence classes
let dict = new Dictionary<'key,ResizeArray<'T>>()
// Build the groupings
seq |> Seq.iter (fun v ->
let key = keyf v
let ok,prev = dict.TryGetValue(key)
if ok then prev.Add(v)
else let prev = new ResizeArray<'T>()
dict.[key] <- prev
prev.Add(v))
dict |> Seq.map (fun group -> group.Key, Seq.readonly group.Value)
and the example use:
> divideIntoEquivalenceClasses (fun n -> n % 3) [ 0 .. 10 ];;
val it : seq<int * seq<int>>
= seq [(0, seq [0; 3; 6; 9]); (1, seq [1; 4; 7; 10]); (2, seq [2; 5; 8])]
first for me this code is really ugly, even if this is safe, It looks more similar to imperative languages than to functional lang..specially compared to clojure. But the problem is not this...I'm having problems with the Dictionary definition
when I type this:
let dict = new Dictionary<'key,ResizeArray<'T>>();;
I get this:
pruebafs2a.fs(32,5): error FS0030: Value restriction. The value 'dict' has been inferred to have generic type
val dict : Dictionary<'_key,ResizeArray<'_T>> when '_key : equality
Either define 'dict' as a simple data term, make it a function with explicit arguments or, if you do not intend for it to be generic, add a type annotation.
is It ok?...
thanks so much
improve question:
Ok I've been reading about value restriction and I found this helpfull information
In particular, only function definitions and simple immutable data
expressions are automatically generalized
...ok..this explains why
let dict = new Dictionary<'key,ResizeArray<'T>>();;
doesn't work...and show 4 different techniques, although in my opinion they only resolve the error but aren't solutions for use generic code:
Technique 1: Constrain Values to Be Nongeneric
let empties : int list [] = Array.create 100 []
Technique 3: Add Dummy Arguments to Generic Functions When Necessary
let empties () = Array.create 100 []
let intEmpties : int list [] = empties()
Technique 4: Add Explicit Type Arguments When Necessary (similar to tec 3)
let emptyLists = Seq.init 100 (fun _ -> [])
> emptyLists<int>;;
val it : seq<int list> = seq [[]; []; []; []; ...]
----- and the only one than let me use real generic code ------
Technique 2: Ensure Generic Functions Have Explicit Arguments
let mapFirst = List.map fst //doesn't work
let mapFirst inp = List.map fst inp
Ok, in 3 of 4 techniques I need resolve the generic code before can work with this...now...returning to book example...when the compile knows the value for 'key and 'T
let dict = new Dictionary<'key,ResizeArray<'T>>()
in the scope the code is very generic for let key be any type, the same happen with 'T
and the biggest dummy question is :
when I enclose the code in a function (technique 3):
let empties = Array.create 100 [] //doesn't work
let empties () = Array.create 100 []
val empties : unit -> 'a list []
I need define the type before begin use it
let intEmpties : int list [] = empties()
for me (admittedly I'm a little dummy with static type languages) this is not real generic because it can't infer the type when I use it, I need define the type and then pass values (not define its type based in the passed values) exist other way define type without be so explicit..
thanks so much..really appreciate any help
This line
let dict = new Dictionary<'key,ResizeArray<'T>>();;
fails because when you type the ;; the compiler doesn't know what 'key and 'T are. As the error message states you need to add a type annotation, or allow the compiler to infer the type by using it later or make it a function
Examples
Type annotation change
let dict = new Dictionary<int,ResizeArray<int>>();;
Using types later
let dict = new Dictionary<'key,ResizeArray<'T>>()
dict.[1] <- 2
using a function
let dict() = new Dictionary<'key,ResizeArray<'T>>();;
This actually doesn't cause an issue when it's defined all together. That is, select the entire block that you posted and send it to FSI in one go. I get this:
val divideIntoEquivalenceClasses :
('T -> 'key) -> seq<'T> -> seq<'key * seq<'T>> when 'key : equality
However, if you type these individually into FSI then as John Palmer says there is not enough information in that isolated line for the interpreter to determine the type constraints. John's suggestions will work, but the original code is doing it correctly - defining the variable and using it in the same scope so that the types can be inferred.
for me this code is really ugly, even if this is safe, It looks more similar to imperative languages than to functional lang.
I agree completely – it's slightly tangential to your direct question, but I think a more idiomatic (functional) approach would be:
let divideIntoEquivalenceClasses keyf seq =
(System.Collections.Generic.Dictionary(), seq)
||> Seq.fold (fun dict v ->
let key = keyf v
match dict.TryGetValue key with
| false, _ -> dict.Add (key, ResizeArray(Seq.singleton v))
| _, prev -> prev.Add v
dict)
|> Seq.map (function KeyValue (k, v) -> k, Seq.readonly v)
This allows sufficient type inference to obviate the need for your question in the first place.
The workarounds proposed by the other answers are all good. Just to clarify based on your latest updates, let's consider two blocks of code:
let empties = Array.create 100 []
as opposed to:
let empties = Array.create 100 []
empties.[0] <- [1]
In the second case, the compiler can infer that empties : int list [], because we are inserting an int list into the array in the second line, which constrains the element type.
It sounds like you'd like the compiler to infer a generic value empties : 'a list [] in the first case, but this would be unsound. Consider what would happen if the compiler did that and we then entered the following two lines in another batch:
empties.[0] <- [1] // treat 'a list [] as int list []
List.iter (printfn "%s") empties.[0] // treat 'a list [] as string list []
Each of these lines unifies the generic type parameter 'a with a different concrete type (int and string). Either of these unifications is fine in isolation, but they are incompatible with each other and would result in treating the int value 1 inserted by the first line as a string when the second line is executed, which is clearly a violation of type safety.
Contrast this with an empty list, which really is generic:
let empty = []
Then in this case, the compiler does infer empty : 'a list, because it's safe to treat empty as a list of different types in different locations in your code without ever impacting type safety:
let l1 : int list = empty
let l2 : string list = empty
let l3 = 'a' :: empty
In the case where you make empties the return value of a generic function:
let empties() = Array.create 100 []
it is again safe to infer a generic type, since if we try our problematic scenario from before:
empties().[0] <- [1]
List.iter (printfn "%s") (empties().[0])
we are creating a new array on each line, so the types can be different without breaking the type system.
Hopefully this helps explain the reasons behind the limitation a bit more.

F# type constraints and overloading resolution

I am trying to emulate a system of type classes in F#; I would like to create pair printer which automatically instantiates the right series of calls to the printing functions. My latest try, which is pasted here, fails miserably since F# cannot identify the right overload and gives up immediately:
type PrintableInt(x:int) =
member this.Print() = printfn "%d" x
let (!) x = PrintableInt(x)
type Printer() =
static member inline Print< ^a when ^a : (member Print : Unit -> Unit)>(x : ^a) =
(^a : (member Print : Unit -> Unit) x)
static member inline Print((x,y) : 'a * 'b) =
Printer.Print(x)
Printer.Print(y)
let x = (!1,!2),(!3,!4)
Printer.Print(x)
Is there any way to do so? I am doing this in the context of game development, so I cannot afford the runtime overhead of reflection, retyping and dynamic casting: either I do this statically through inlining or I don't do it at all :(
What you're trying to do is possible.
You can emulate typeclasses in F#, as Tomas said maybe is not as idiomatic as in Haskell. I think in your example you are mixing typeclasses with duck-typing, if you want to go for the typeclasses approach don't use members, use functions and static members instead.
So your code could be something like this:
type Print = Print with
static member ($) (_Printable:Print, x:string) = printfn "%s" x
static member ($) (_Printable:Print, x:int ) = printfn "%d" x
// more overloads for existing types
let inline print p = Print $ p
type Print with
static member inline ($) (_Printable:Print, (a,b) ) = print a; print b
print 5
print ((10,"hi"))
print (("hello",20), (2,"world"))
// A wrapper for Int (from your sample code)
type PrintableInt = PrintableInt of int with
static member ($) (_Printable:Print, (PrintableInt (x:int))) = printfn "%d" x
let (!) x = PrintableInt(x)
let x = (!1,!2),(!3,!4)
print x
// Create a type
type Person = {fstName : string ; lstName : string } with
// Make it member of _Printable
static member ($) (_Printable:Print, p:Person) = printfn "%s, %s" p.lstName p.fstName
print {fstName = "John"; lstName = "Doe" }
print (1 ,{fstName = "John"; lstName = "Doe" })
Note: I used an operator to avoid writing the constraints by hand, but in this case is also possible to use a named static member.
More about this technique here.
What you're trying to do is not possible (edit: apparently, it can be done - but it might not be idiomatic F#), because the constraint language cannot capture the constraints you need for the second Print operation. Basically, there is no way to write recursive constraints saying that:
Let C be a constraint specifying that the type either provides Print or it is a two-element tuple where each element satisfies C.
F# does not support type-classes and so most of the attempts to emulate them will (probably) be limited in some way or will look very unnatural. In practice, instead of trying to emulate solutions that work in other languages, it is better to look for an idiomatic F# solution to the problem.
The pretty printing that you're using as a sample would be probably implemented using Reflection or by wrapping not just integers, but also tuples.

Value restriction when there are no generic parameters

I get the value restriction error on let makeElem in the following code:
let elemCreator (doc: XmlDocument) =
fun name (value: obj) ->
let elem = doc.CreateElement(name)
match value with
| :? seq<#XmlNode> as childs ->
childs |> Seq.iter (fun c -> elem.AppendChild(c) |> ignore)
elem
| _ -> elem.Value <- value.ToString(); elem
let doc = new XmlDocument()
let makeElem = elemCreator doc
Why I get the value restriction error if anonymous function returned from elemCreator hasn't any generic parameters?
The compiler states that the infered type of makeElem is (string -> 'a -> XmlNode). But why it infers second parameter as 'a if I've declared it as obj?
I believe that this may be the "expected" behavior (although unfortunate in this case), as a result of the compiler's generalization and condensation processes. Consider Tomas's example:
let foo (s:string) (a:obj) = a
If you were to define
let bar a = foo "test" a
then the compiler will infer the type bar : 'a -> obj because it generalizes the type of the first argument. In your case, you have the equivalent of
let bar = foo "test"
so bar is a value rather than a syntactic function. The compiler does essentially the same inference procedure, except now the value restriction applies. This is unfortunate in your case, since it means that you have to explicitly annotate makeElem with a type annotation (or make it a syntactic function).
This looks like an unexpected behavior to me. It can be demonstrated using a simpler function:
let foo (s:string) (a:obj) = a
let bar = foo "bar" // Value restriction
One possible explanation might be that the F# compiler allows you to call a function taking parameter of some type with an argument of any subtype. So, you can call foo "hi" (new A()) without explicitly casting A to obj (which used to be required some time ago).
This implicit casting could mean that the compiler actually interprets bar as something like this:
let bar a = foo "bar" (a :> obj)
...and so it thinks that the argument is generic. Anyway, this is just a speculation, so you could try sending this as a bug report to fsbugs at microsoft dot com.
(The following is based solely on observation.)
If you have a function obj -> 'a, calls to that function are not used to infer/solve the type of its argument. An illustration:
let writeLine (arg: obj) = System.Console.WriteLine(arg)
writeLine is obj -> unit
let square x =
writeLine x
x * x
In the above function x is inferred as int because of (*). If a type could be constrained by obj then this function would not work (x would be inferred as obj prior to the use of (*), which would cause an error along the lines of: type obj does not support operator (*)).
I think this behavior is a Good Thing. There's no need to restrict a type as obj because every type is already implicitly convertible to obj. This allows your program to be more generic and provides better interoperability with the .NET BCL.
In short, obj has no bearing on type inference (yay!).

Resources