Is there a way to make drawRect work right NOW? - ios

If you are an advanced user of drawRect, you will know that of course drawRect will not actually run until "all processing is finished."
setNeedsDisplay flags a view as invalidated and the OS, and basically waits until all processing is done. This can be infuriating in the common situation where you want to have:
a view controller 1
starts some function 2
which incrementally 3
creates a more and more complicated artwork and 4
at each step, you setNeedsDisplay (wrong!) 5
until all the work is done 6
Of course, when you do the above 1-6, all that happens is that drawRect is run once only after step 6.
Your goal is for the view to be refreshed at point 5. What to do?

If I understand your question correctly, there is a simple solution to this. During your long-running routine you need to tell the current runloop to process for a single iteration (or more, of the runloop) at certain points in your own processing. e.g, when you want to update the display. Any views with dirty update regions will have their drawRect: methods called when you run the runloop.
To tell the current runloop to process for one iteration (and then return to you...):
[[NSRunLoop currentRunLoop] runMode: NSDefaultRunLoopMode beforeDate: [NSDate date]];
Here's an example of an (inefficient) long running routine with a corresponding drawRect - each in the context of a custom UIView:
- (void) longRunningRoutine:(id)sender
{
srand( time( NULL ) );
CGFloat x = 0;
CGFloat y = 0;
[_path moveToPoint: CGPointMake(0, 0)];
for ( int j = 0 ; j < 1000 ; j++ )
{
x = 0;
y = (CGFloat)(rand() % (int)self.bounds.size.height);
[_path addLineToPoint: CGPointMake( x, y)];
y = 0;
x = (CGFloat)(rand() % (int)self.bounds.size.width);
[_path addLineToPoint: CGPointMake( x, y)];
x = self.bounds.size.width;
y = (CGFloat)(rand() % (int)self.bounds.size.height);
[_path addLineToPoint: CGPointMake( x, y)];
y = self.bounds.size.height;
x = (CGFloat)(rand() % (int)self.bounds.size.width);
[_path addLineToPoint: CGPointMake( x, y)];
[self setNeedsDisplay];
[[NSRunLoop currentRunLoop] runMode: NSDefaultRunLoopMode beforeDate: [NSDate date]];
}
[_path removeAllPoints];
}
- (void) drawRect:(CGRect)rect
{
CGContextRef ctx = UIGraphicsGetCurrentContext();
CGContextSetFillColorWithColor( ctx, [UIColor blueColor].CGColor );
CGContextFillRect( ctx, rect);
CGContextSetStrokeColorWithColor( ctx, [UIColor whiteColor].CGColor );
[_path stroke];
}
And here is a fully working sample demonstrating this technique.
With some tweaking you can probably adjust this to make the rest of the UI (i.e. user-input) responsive as well.
Update (caveat for using this technique)
I just want to say that I agree with much of the feedback from others here saying this solution (calling runMode: to force a call to drawRect:) isn't necessarily a great idea. I've answered this question with what I feel is a factual "here's how" answer to the stated question, and I am not intending to promote this as "correct" architecture. Also, I'm not saying there might not be other (better?) ways to achieve the same effect - certainly there may be other approaches that I wasn't aware of.
Update (response to the Joe's sample code and performance question)
The performance slowdown you're seeing is the overhead of running the runloop on each iteration of your drawing code, which includes rendering the layer to the screen as well as all of the other processing the runloop does such as input gathering and processing.
One option might be to invoke the runloop less frequently.
Another option might be to optimize your drawing code. As it stands (and I don't know if this is your actual app, or just your sample...) there are a handful of things you could do to make it faster. The first thing I would do is move all the UIGraphicsGet/Save/Restore code outside the loop.
From an architectural standpoint however, I would highly recommend considering some of the other approaches mentioned here. I see no reason why you can't structure your drawing to happen on a background thread (algorithm unchanged), and use a timer or other mechanism to signal the main thread to update it's UI on some frequency until the drawing is complete. I think most of the folks who've participated in the discussion would agree that this would be the "correct" approach.

Updates to the user interface happen at the end of the current pass through the run loop. These updates are performed on the main thread, so anything that runs for a long time in the main thread (lengthy calculations, etc.) will prevent the interface updates from being started. Additionally, anything that runs for a while on the main thread will also cause your touch handling to be unresponsive.
This means that there is no way to "force" a UI refresh to occur from some other point in a process running on the main thread. The previous statement is not entirely correct, as Tom's answer shows. You can allow the run loop to come to completion in the middle of operations performed on the main thread. However, this still may reduce the responsiveness of your application.
In general, it is recommended that you move anything that takes a while to perform to a background thread so that the user interface can remain responsive. However, any updates you wish to perform to the UI need to be done back on the main thread.
Perhaps the easiest way to do this under Snow Leopard and iOS 4.0+ is to use blocks, like in the following rudimentary sample:
dispatch_queue_t main_queue = dispatch_get_main_queue();
dispatch_async(queue, ^{
// Do some work
dispatch_async(main_queue, ^{
// Update the UI
});
});
The Do some work part of the above could be a lengthy calculation, or an operation that loops over multiple values. In this example, the UI is only updated at the end of the operation, but if you wanted continuous progress tracking in your UI, you could place the dispatch to the main queue where ever you needed a UI update to be performed.
For older OS versions, you can break off a background thread manually or through an NSOperation. For manual background threading, you can use
[NSThread detachNewThreadSelector:#selector(doWork) toTarget:self withObject:nil];
or
[self performSelectorInBackground:#selector(doWork) withObject:nil];
and then to update the UI you can use
[self performSelectorOnMainThread:#selector(updateProgress) withObject:nil waitUntilDone:NO];
Note that I've found the NO argument in the previous method to be needed to get constant UI updates while dealing with a continuous progress bar.
This sample application I created for my class illustrates how to use both NSOperations and queues for performing background work and then updating the UI when done. Also, my Molecules application uses background threads for processing new structures, with a status bar that is updated as this progresses. You can download the source code to see how I achieved this.

You can do this repeatedly in a loop and it'll work fine, no threads, no messing with the runloop, etc.
[CATransaction begin];
// modify view or views
[view setNeedsDisplay];
[CATransaction commit];
If there is an implicit transaction already in place prior to the loop you need to commit that with [CATransaction commit] before this will work.

In order to get drawRect called the soonest (which is not necessarily immediately, as the OS may still wait until, for instance, the next hardware display refresh, etc.), an app should idle it's UI run loop as soon as possible, by exiting any and all methods in the UI thread, and for a non-zero amount of time.
You can either do this in the main thread by chopping any processing that takes more than an animation frame time into shorter chunks and scheduling continuing work only after a short delay (so drawRect might run in the gaps), or by doing the processing in a background thread, with a periodic call to performSelectorOnMainThread to do a setNeedsDisplay at some reasonable animation frame rate.
A non-OpenGL method to update the display near immediately (which means at the very next hardware display refresh or three) is by swapping visible CALayer contents with an image or CGBitmap that you have drawn into. An app can do Quartz drawing into a Core Graphics bitmap at pretty much at any time.
New added answer:
Please see Brad Larson's comments below and Christopher Lloyd's comment on another answer here as the hint leading towards this solution.
[ CATransaction flush ];
will cause drawRect to be called on views on which a setNeedsDisplay request has been done, even if the flush is done from inside a method that is blocking the UI run loop.
Note that, when blocking the UI thread, a Core Animation flush is required to update changing CALayer contents as well. So, for animating graphic content to show progress, these may both end up being forms of the same thing.
New added note to new added answer above:
Do not flush faster than your drawRect or animation drawing can complete, as this might queue up flushes, causing weird animation effects.

Without questioning the wisdom of this (which you ought to do), you can do:
[myView setNeedsDisplay];
[[myView layer] displayIfNeeded];
-setNeedsDisplay will mark the view as needing to be redrawn.
-displayIfNeeded will force the view's backing layer to redraw, but only if it has been marked as needing to be displayed.
I will emphasize, however, that your question is indicative of an architecture that could use some re-working. In all but exceptionally rare cases, you should never need to or want to force a view to redraw immediately. UIKit with not built with that use-case in mind, and if it works, consider yourself lucky.

Have you tried doing the heavy processing on a secondary thread and calling back to the main thread to schedule view updates? NSOperationQueue makes this sort of thing pretty easy.
Sample code that takes an array of NSURLs as input and asynchronously downloads them all, notifying the main thread as each of them is finished and saved.
- (void)fetchImageWithURLs:(NSArray *)urlArray {
[self.retriveAvatarQueue cancelAllOperations];
self.retriveAvatarQueue = nil;
NSOperationQueue *opQueue = [[NSOperationQueue alloc] init];
for (NSUInteger i=0; i<[urlArray count]; i++) {
NSURL *url = [urlArray objectAtIndex:i];
NSInvocation *inv = [NSInvocation invocationWithMethodSignature:[self methodSignatureForSelector:#selector(cacheImageWithIndex:andURL:)]];
[inv setTarget:self];
[inv setSelector:#selector(cacheImageWithIndex:andURL:)];
[inv setArgument:&i atIndex:2];
[inv setArgument:&url atIndex:3];
NSInvocationOperation *invOp = [[NSInvocationOperation alloc] initWithInvocation:inv];
[opQueue addOperation:invOp];
[invOp release];
}
self.retriveAvatarQueue = opQueue;
[opQueue release];
}
- (void)cacheImageWithIndex:(NSUInteger)index andURL:(NSURL *)url {
NSData *imageData = [NSData dataWithContentsOfURL:url];
NSFileManager *fileManager = [NSFileManager defaultManager];
NSString *filePath = PATH_FOR_IMG_AT_INDEX(index);
NSError *error = nil;
// Save the file
if (![fileManager createFileAtPath:filePath contents:imageData attributes:nil]) {
DLog(#"Error saving file at %#", filePath);
}
// Notifiy the main thread that our file is saved.
[self performSelectorOnMainThread:#selector(imageLoadedAtPath:) withObject:filePath waitUntilDone:NO];
}

I think, the most complete answer comes from the Jeffrey Sambell's blog post 'Asynchronous Operations in iOS with Grand Central Dispatch' and it worked for me!
It's basically the same solution as proposed by Brad above but fully explained in terms of OSX/IOS concurrency model.
The dispatch_get_current_queue function will return the current queue
from which the block is dispatched and the dispatch_get_main_queue
function will return the main queue where your UI is running.
The dispatch_get_main_queue function is very useful for updating the
iOS app’s UI as UIKit methods are not thread safe (with a few
exceptions) so any calls you make to update UI elements must always be
done from the main queue.
A typical GCD call would look something like this:
// Doing something on the main thread
dispatch_queue_t myQueue = dispatch_queue_create("My Queue",NULL);
dispatch_async(myQueue, ^{
// Perform long running process
dispatch_async(dispatch_get_main_queue(), ^{
// Update the UI
});
});
// Continue doing other stuff on the
// main thread while process is running.
And here goes my working example (iOS 6+). It displays frames of a stored video using the AVAssetReader class:
//...prepare the AVAssetReader* asset_reader earlier and start reading frames now:
[asset_reader startReading];
dispatch_queue_t readerQueue = dispatch_queue_create("Reader Queue", NULL);
dispatch_async(readerQueue, ^{
CMSampleBufferRef buffer;
while ( [asset_reader status]==AVAssetReaderStatusReading )
{
buffer = [asset_reader_output copyNextSampleBuffer];
if (buffer!=nil)
{
//The point is here: to use the main queue for actual UI operations
dispatch_async(dispatch_get_main_queue(), ^{
// Update the UI using the AVCaptureVideoDataOutputSampleBufferDelegate style function
[self captureOutput:nil didOutputSampleBuffer:buffer fromConnection:nil];
CFRelease (buffer);
});
}
}
});
The first part of this sample may be found here in Damian's answer.

I'd like to offer a clean solution to the given problem.
I agree with other posters that in an ideal situation all the heavy lifting should be done in a background thread, however there are times when this simply isn't possible because the time consuming part requires lots of accessing to non thread-safe methods such as those offered by UIKit. In my case, initialising my UI is time consuming and there's nothing I can run in the background, so my best option is to update a progress bar during the init.
However, once we think in terms of the ideal GCD approach, the solution is actually a simple. We do all the work in a background thread, dividing it into chucks that are called synchronously on the main thread. The run loop will be run for each chuck, updating the UI and any progress bars etc.
- (void)myInit
{
// Start the work in a background thread.
dispatch_async(dispatch_get_global_queue(0, 0), ^{
// Back to the main thread for a chunk of code
dispatch_sync(dispatch_get_main_queue(), ^{
...
// Update progress bar
self.progressIndicator.progress = ...:
});
// Next chunk
dispatch_sync(dispatch_get_main_queue(), ^{
...
// Update progress bar
self.progressIndicator.progress = ...:
});
...
});
}
Of course, this is essentially the same as Brad's technique, but his answer doesn't quite address the issue at hand - that of running a lot of non thread safe code while updating the UI periodically.

Joe -- if you are willing to set it up so that your lengthy processing all happens inside of drawRect, you can make it work. I just wrote a test project. It works. See code below.
LengthyComputationTestAppDelegate.h:
#import <UIKit/UIKit.h>
#interface LengthyComputationTestAppDelegate : NSObject <UIApplicationDelegate> {
UIWindow *window;
}
#property (nonatomic, retain) IBOutlet UIWindow *window;
#end
LengthComputationTestAppDelegate.m:
#import "LengthyComputationTestAppDelegate.h"
#import "Incrementer.h"
#import "IncrementerProgressView.h"
#implementation LengthyComputationTestAppDelegate
#synthesize window;
#pragma mark -
#pragma mark Application lifecycle
- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
// Override point for customization after application launch.
IncrementerProgressView *ipv = [[IncrementerProgressView alloc]initWithFrame:self.window.bounds];
[self.window addSubview:ipv];
[ipv release];
[self.window makeKeyAndVisible];
return YES;
}
Incrementer.h:
#import <Foundation/Foundation.h>
//singleton object
#interface Incrementer : NSObject {
NSUInteger theInteger_;
}
#property (nonatomic) NSUInteger theInteger;
+(Incrementer *) sharedIncrementer;
-(NSUInteger) incrementForTimeInterval: (NSTimeInterval) timeInterval;
-(BOOL) finishedIncrementing;
incrementer.m:
#import "Incrementer.h"
#implementation Incrementer
#synthesize theInteger = theInteger_;
static Incrementer *inc = nil;
-(void) increment {
theInteger_++;
}
-(BOOL) finishedIncrementing {
return (theInteger_>=100000000);
}
-(NSUInteger) incrementForTimeInterval: (NSTimeInterval) timeInterval {
NSTimeInterval negativeTimeInterval = -1*timeInterval;
NSDate *startDate = [NSDate date];
while (!([self finishedIncrementing]) && [startDate timeIntervalSinceNow] > negativeTimeInterval)
[self increment];
return self.theInteger;
}
-(id) init {
if (self = [super init]) {
self.theInteger = 0;
}
return self;
}
#pragma mark --
#pragma mark singleton object methods
+ (Incrementer *) sharedIncrementer {
#synchronized(self) {
if (inc == nil) {
inc = [[Incrementer alloc]init];
}
}
return inc;
}
+ (id)allocWithZone:(NSZone *)zone {
#synchronized(self) {
if (inc == nil) {
inc = [super allocWithZone:zone];
return inc; // assignment and return on first allocation
}
}
return nil; // on subsequent allocation attempts return nil
}
- (id)copyWithZone:(NSZone *)zone
{
return self;
}
- (id)retain {
return self;
}
- (unsigned)retainCount {
return UINT_MAX; // denotes an object that cannot be released
}
- (void)release {
//do nothing
}
- (id)autorelease {
return self;
}
#end
IncrementerProgressView.m:
#import "IncrementerProgressView.h"
#implementation IncrementerProgressView
#synthesize progressLabel = progressLabel_;
#synthesize nextUpdateTimer = nextUpdateTimer_;
-(id) initWithFrame:(CGRect)frame {
if (self = [super initWithFrame: frame]) {
progressLabel_ = [[UILabel alloc]initWithFrame:CGRectMake(20, 40, 300, 30)];
progressLabel_.font = [UIFont systemFontOfSize:26];
progressLabel_.adjustsFontSizeToFitWidth = YES;
progressLabel_.textColor = [UIColor blackColor];
[self addSubview:progressLabel_];
}
return self;
}
-(void) drawRect:(CGRect)rect {
[self.nextUpdateTimer invalidate];
Incrementer *shared = [Incrementer sharedIncrementer];
NSUInteger progress = [shared incrementForTimeInterval: 0.1];
self.progressLabel.text = [NSString stringWithFormat:#"Increments performed: %d", progress];
if (![shared finishedIncrementing])
self.nextUpdateTimer = [NSTimer scheduledTimerWithTimeInterval:0. target:self selector:(#selector(setNeedsDisplay)) userInfo:nil repeats:NO];
}
- (void)dealloc {
[super dealloc];
}
#end

Regarding the original issue:
In a word, you can (A) background the large painting, and call to the foreground for UI updates or (B) arguably controversially there are four 'immediate' methods suggested that do not use a background process. For the result of what works, run the demo program. It has #defines for all five methods.
Alternately per Tom Swift
Tom Swift has explained the amazing idea of quite simply manipulating the run loop. Here's how you trigger the run loop:
[[NSRunLoop currentRunLoop] runMode: NSDefaultRunLoopMode beforeDate: [NSDate date]];
This is a truly amazing piece of engineering. Of course one should be extremely careful when manipulating the run loop and as many pointed out this approach is strictly for experts.
However, a bizarre problem arises ...
Even though a number of the methods work, they don't actually "work" because there is a bizarre progressive-slow-down artifact you will see clearly in the demo.
Scroll to the 'answer' I pasted in below, showing the console output - you can see how it progressively slows.
Here's the new SO question:
Mysterious "progressive slowing" problem in run loop / drawRect
Here is V2 of the demo app...
http://www.fileswap.com/dl/p8lU3gAi/stepwiseDrawingV2.zip.html
You will see it tests all five methods,
#ifdef TOMSWIFTMETHOD
[self setNeedsDisplay];
[[NSRunLoop currentRunLoop]
runMode:NSDefaultRunLoopMode beforeDate:[NSDate date]];
#endif
#ifdef HOTPAW
[self setNeedsDisplay];
[CATransaction flush];
#endif
#ifdef LLOYDMETHOD
[CATransaction begin];
[self setNeedsDisplay];
[CATransaction commit];
#endif
#ifdef DDLONG
[self setNeedsDisplay];
[[self layer] displayIfNeeded];
#endif
#ifdef BACKGROUNDMETHOD
// here, the painting is being done in the bg, we have been
// called here in the foreground to inval
[self setNeedsDisplay];
#endif
You can see for yourself which methods work and which do not.
you can see the bizarre "progressive-slow-down". Why does it happen?
you can see with the controversial TOMSWIFT method, there is actually no problem at all with responsiveness. tap for response at any time (but still the bizarre "progressive-slow-down" problem)
So the overwhelming thing is this weird "progressive-slow-down": on each iteration, for unknown reasons, the time taken for a loop decreases. Note that this applies to both doing it "properly" (background look) or using one of the 'immediate' methods.
Practical solutions?
For anyone reading in the future, if you are actually unable to get this to work in production code because of the "mystery progressive slowdown", Felz and Void have each presented astounding solutions in the other specific question.

Related

Calculating percentage of loaded data from background queue using GCD

I amy trying to make simple progress bar in SpriteKit. To simplify the example I will use SKLabelNode and it's text property, which will indicate the progress.
Here is the code( GameScene.m ):
#import "GameScene.h"
#interface GameScene ()
typedef void (^CompletitionHandler)(void);
#property (nonatomic,strong)SKLabelNode* progressBar;
#end
#implementation GameScene
-(void)didMoveToView:(SKView *)view {
/* Setup your scene here */
self.progressBar = [SKLabelNode labelNodeWithFontNamed:#"Chalkduster"];
self.progressBar.fontColor = [SKColor redColor];
self.progressBar.fontSize = 24.0;
self.progressBar.position = CGPointMake(CGRectGetMidX(self.frame),CGRectGetMidY(self.frame));
[self addChild:self.progressBar];
[self loadSceneAssetsWithCompletionHandler:^{
[self setupScene:view];
}];
}
- (void)loadSceneAssetsWithCompletionHandler:(CompletitionHandler)handler {
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0), ^{
// Load the shared assets in the background.
//This part simulates bunch of assets(textures, emitters etc) loading in background
for (int i = 0; i <= 100; i++) {
[NSThread sleepForTimeInterval:0.01];
float progressValue = (float)i;
dispatch_async(dispatch_get_main_queue(), ^{
self.progressBar.text = [NSString stringWithFormat:#"%1.f", progressValue];
});
}
if (!handler) {
return;
}
dispatch_async(dispatch_get_main_queue(), ^{
// Call the completion handler back on the main queue.
handler();
});
});
}
Now I am trying to find an obvious way, if there is any, to update the progress based on percentage of data loaded from background queue.
The problem is that I want to show percentage of loaded data from 0 to 100. But I don't know how to tell what would be 1% of bunch of textures, emitters and nodes, or I can say, I don't know how to update a progress bar after %1 is loaded. This is because I am working with different kind of objects. Is there any way to check the state of certain background queue to see how much stuff is left to be executed(loaded)?
Anybody has any idea, or suggestion ?
If you are looking to get an update on, for example, how much is left to load for a texture atlas then the answer is you can't.
You can however keep a "load items" counter and update that once an asset is loaded. For example, you have 13 texture atlases to load and some sound files, both of those have completion capability in their loading methods.
- (void)preloadWithCompletionHandler:(void (^)(void))completionHandler
playSoundFileNamed:(NSString *)soundFile
waitForCompletion:(BOOL)wait
Every time an asset finishes loading, update your counter. To be honest though, I am not sure if this is really necessary as loading usually happens very quickly. Display a generic "loading" message for a few seconds is probably your best (and easiest) option.

iOS App freezing with NSConditionLock

I'm having this wierd problem with the app freezing at a certain point. I'm guessing its got to do with how I'm using NSConditionLock.
Theres a library I have been given to use, which consists of a series of survey questions, but it works in such a way that it races directly to the last question without accepting answers, hence the need to pause the thread and accept input from the user.
I haven't used it before so maybe someone could help if I'm implementing it wrongly?
Please let me know if the code provided is insufficient.
- (void)viewDidLoad
{
[super viewDidLoad];
//INITIALISE CONDITION LOCK WITH CONDITION 0
condition=[[NSConditionLock alloc]initWithCondition: 0];
}
- (IBAction)startPressed:(UIButton*)sender {
if (sender.tag == 1) {
//START BACKGROUND THREAD
surveyThread = [[NSThread alloc] initWithTarget:self selector:#selector(runProjecttest) object:nil];
[surveyThread start];
}
else
{
//DO SOME STUFF AND THEN UNLOCK
[condition unlockWithCondition:1];
}
}
- (void) runProjecttest:(AbstractTask *)rendertask
{
// DO STUFF AND SHOW UI ON MAIN THREAD, THEN LOCK
[self performSelectorOnMainThread:#selector(showUI:) withObject:task waitUntilDone:YES];
[condition lockWhenCondition: 1];
}
EDIT: In short, I want the Objc equivalent of this java snippet...
this.runOnUiThread(showUI);
try
{
//SLEEP
Thread.sleep(1000*60*60*24*365*10);
}
catch (InterruptedException e)
{
//WAKE
setResponse(at,showUI);
}
EDIT 2: ShowUI method on Paul's request.
[self removePreviousSubViews];
switch ([task getType]) {
case SingleChoiceType:
{
NSLog(#"SingleChoiceType");
isMultipleChoice = NO;
[self addSingleChoiceView:nil];
break;
}
case TextType:
{
NSLog(#"TextType");
self.txtTextType.keyboardType=UIKeyboardTypeDefault;
[self addTextTypeView:nil];
break;
}
...more cases
}
-(void)addTextTypeView:(NSSet *)objects
{
self.txtTextType.text = #"";
CGRect frame = self.txtQuestionType.frame;
// frame.size = [self.txtQuestionType sizeThatFits: CGSizeMake(self.txtQuestionType.frame.size.width, FLT_MAX)];
frame.size.height = [self textViewHeightForAttributedText:self.txtQuestionType.text andWidth:self.txtQuestionType.frame.size.width andTextView:self.txtQuestionType];
self.txtQuestionType.frame=frame;
self.textTypeView.frame = CGRectMake((self.view.frame.size.width - self.textTypeView.frame.size.width)/2, ( self.txtQuestionType.frame.origin.y+self.txtQuestionType.frame.size.height), self.textTypeView.frame.size.width, self.textTypeView.frame.size.height);
[self.view addSubview: self.textTypeView];
}
I agree with BryanChen, I think you may have another issue. Without details on the survey library, it is impossible to confirm, but assuming that it is a UIViewController than accepts touch inputs to progress through a series of questions, it is hard to see why it is a threading issue - it simply shouldn't advance without user interaction.
That aside, your use of NSCondtionLock doesn't look right either.
Essentially an NSConditionLock has an NSInteger that represents the current 'condition', but just think of it of a number. There are then two basic operations you can perform -
lockWhenCondition:x will block the current thread until the 'condition' is 'x' and the lock is available. It will then claim the lock.
unlockWithCondition:y releases the lock and sets the condition to 'y'
There are also methods to set timeouts (lockBeforeDate) and try to claim the lock without blocking (tryLock, tryLockWhenCondition).
To synchronise two threads, the general pattern is
Initialise Lock to condition 'x'
Thread 1 lockWhenCondition:x -This thread can claim the lock because it is x
Thread 2 lockWhenCondition:y - This thread will block because the lock is x
Thread 1 completes work, unlockWithCondition:y - This will enable Thread 2 to claim the lock and unblock that thread
Your code looks strange, because you are starting a thread in your if clause but unlocking in an else clause. I would have thought you would have something like -
-(IBAction)startPressed:(UIButton*)sender {
if (sender.tag == 1) {
//START BACKGROUND THREAD
surveyThread = [[NSThread alloc] initWithTarget:self selector:#selector(runProjecttest) object:nil];
[surveyThread start];
[condition:lockWithCondition:1]; // This will block until survey thread completes
[condition:unlockWithCondition:0]; // Unlock and ready for next time
}
}
- (void) runProjecttest:(AbstractTask *)rendertask
{
// DO STUFF AND SHOW UI ON MAIN THREAD, THEN LOCK
[condition lockWhenCondition: 0];
[self performSelectorOnMainThread:#selector(showUI:) withObject:task waitUntilDone:YES];
[condition unlockWithCondition:1];
}
BUT This looks like a recipe for deadlock to me, because you are performing the showUI selector on the main thread that is blocked waiting for the survey thread to complete.
Which brings us back to the question, what does showUI do and why is it skipping directly to the end?

Issue updating label in iOS when iterating over array

I am new to iOS programming, and I could not find an answer out there already.
In Xcode 5, I am iterating over an array, and attempting to update a label with the values as they change.
here is the .h file...
#import <UIKit/UIKit.h>
#interface ViewController : UIViewController
#property (strong, nonatomic) NSArray *currentNumber;
#property (strong, nonatomic) IBOutlet UILabel *showLabel;
- (IBAction)start;
#end
here is the main part of the .m file...
#import "ViewController.h"
#interface ViewController ()
#end
#implementation ViewController
- (void)viewDidLoad
{
[super viewDidLoad];
self.currentNumber = [NSArray arrayWithObjects:#"1", #"2", #"3", #"4", nil];
}
This is where it gets tricky...
The following works perfectly...
- (IBAction)start {
self.showLabel.text = [NSString stringWithFormat:#"new text"];
}
#end
As does this...
- (IBAction)start {
for (NSString *p in self.currentNumber) {
NSLog(#"%#", p);
sleep(3);
}
}
#end
But when I replace the NSLog with setting the .text attribute, it "fails". The timing still happens, and the label updates with the last item in the array after...
- (IBAction)start {
for (NSString *p in self.currentNumber) {
self.showLabel.text = [NSString stringWithFormat:#"%#", p];
sleep(3);
}
}
#end
And the last bit of weirdness, if I use the NSLog, and try to change the .text attribute before the "for" loop is called, the text change is ignored until AFTER the loop completes...
- (IBAction)start {
self.showLabel.text = [NSString stringWithFormat:#"5"];
for (NSString *p in self.currentNumber) {
NSLog(#"%#", p);
sleep(3);
}
}
#end
What am I missing?
(If you want to see the source files, you can get them at https://github.com/lamarrg/iterate
As you've realized, the UI will only update when the main thread is processing events. In a loop, it won't be.
There's a couple ways around this.
The simplest is to perform your loop in a background thread. There's a wrinkle, though: This will allow the user to continue to interact with your UI. And also, the UI can only be updated from the main thread.
You'll want to dispatch your work to the background, then have the background dispatch your work back to the main thread.
This sounds complicated, and it is. Thankfully, Apple added blocks and Grand Central Dispatch to Objective-C. You can use those to break down the chunks of code and make sure they're executed on the correct thread.
- (IBAction)start {
[self disableMyUI];
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_NORMAL, 0), ^{
// this code will be executed "later", probably after start has returned.
// (in all cases, later should be considered "soon but not immediately.")
for (NSString *p in self.currentNumber) {
dispatch_async(dispatch_get_main_queue(),^{
// this code will be executed "later" by the main loop.
// You may have already moved on to the next thing, and even
// dispatched the next UI update.
// Don't worry; the main queue does things in order.
self.showLabel.text = [NSString stringWithFormat:#"%#", p];
});
sleep(3); // do your heavy lifting here, but keep in mind:
// you're on a background thread.
}
dispatch_async(dispatch_get_main_queue,^{
// this occurs "later," but after other all other UI events queued
// to the main queue.
[self enableMyUI];
});
}
// this line of code will run before work is complete
}
You'll have to write disableMyUI and enableMyUI; make sure they disable everything (including the back button if you're using navigation, the tab bar if you're using a tab bar controller, etc).
Another way around this is to use a NSTimer. However, if you do this you're still doing your work on the main thread. It'll work if you can split your work into predictable, small pieces, but you're better off doing it on a background thread.
One thing to keep in mind: Although you're not likely to run into problems while developing, doing heavy work on the main thread will lead to user crashes. On iOS there is a process that watches if applications are responding to events, such as drawing updates. If an application isn't responding to events in a timely fashion, it will be terminated. So living with the lack of UI updates isn't an option for you; you need to only do time consuming operations from background thread.
See also:
Programming with Objective-C: Working with Blocks
If you want to update the label periodically, don't use sleep. If you call it on the main thread you'll be blocking the UI, which is not very desirable.
Use a NSTimer instead, making it fire every N seconds.
Something like this will do:
- (void)startUpdatingLabel {
[NSTimer scheduledTimerWithTimeInterval:0 target:self selector:#selector(updateLabelWithIndex:) userInfo:#0 repeats:NO];
}
- (void)updateLabel:(NSTimer *)timer {
NSInteger index = [timer.userInfo integerValue];
if (index >= self.currentNumber.count) {
return;
}
self.showLabel.text = [NSString stringWithFormat:#"%#", self.currentNumber[index]];
[NSTimer scheduledTimerWithTimeInterval:3 target:self selector:#selector(updateLabelWithIndex:) userInfo:#(index+1) repeats:NO];
}
Every time updateLabel: is invoked it schedules a new timer which will call it again in 3 seconds. Each time the index value is increased and passed along.

Animating CALayers in background with setNeedsDisplay

I am porting my library from Andriod to IOS and I have made a great deal of progress and learned a little about Objective C in the process. I say a little, because there is a lot to learn. The Android library creates a surfaceView and does animation by drawing the images directly to the surfaceView; in Objective C, I am using a UIView with CALayers.
In the UIView I am dynamically adding CALayers loaded with Sprite Sheet images and then moving the CALayers around in the UIView while roating through the Sprite image in the CALayer by moving the contentsRect of the CALayer.
This all works perfectly in a background thread in Android and does not interfere with the host application. In Objective C, I am trying to run it in the background as well using either performSelectorInBackground or the new Grand Central Dispatch. Both seem to work in the background fine, loading images into the CALayers and then I hit the snag: the CALayers are not displaying.
I know the CALayers are there, because when I pause the app in the simulator by clicking on the middle hardware button and then click again to display it the CALayers are there looking great – but static.
Having read posts for days and trying various ways of setting NeedsDisplay and NeedsLayout on the UIView and the individual CALayers, I have given up and I am asking for your help.
So, please take a look at the code below and let me know what I am doing wrong. I am also having problems setting the frame of my CALayers. When I try to set them with [self setFrame: CGRectMake(0,0,spWidth, spHeight)] – both NSIntegers; I get an error saying Sending CGRect to parameter of incompatible type NSInteger. I know this is probably a rookie mistake.
Here are the relevant sections of my code. I will post more, but I am hoping that my error is in the run method.
In my custom UIView
if ((self = [super initWithFrame:CGRectMake(0,0,dw,dh)])){
(initialization and defining variables)
self.bounds = CGRectMake(0, 0, dw, dh);
self.frame = CGRectMake(0,0,dw,dh);
self.backgroundColor = [UIColor whiteColor];
MainDrawLayer = [[CALayer layer]retain];
MainDrawLayer.bounds = CGRectMake(0, 0, dw, dh); //dw=320 dh=50.
MainDrawLayer.frame = CGRectMake(0,0,dw,dh);
[self.layer addSublayer:MainDrawLayer] ;
}
return self;
All of the action is triggered in the run method below which I call from the ViewController.
- (void) run {
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT,0), ^{
PGM = [[[GadsMonitor alloc] init: #"http://www.javelin21.com/servlets/theloader" :_displaySizeW :_displaySizeH]autorelease];
while(!PGM.adsdone){
[NSThread sleepForTimeInterval:2.0];
NSLog(#"The value of adsdone is %#\n", (PGM.adsdone ? #"YES" : #"NO"));
}
NSLog(#"Into processComponent Number in PGM.PGVarray %d ", PGM.PGVarray.count);
GVarray = [PGM.PGVarray mutableCopy];
NSLog(#"Into RUN after copy GVArray %d ", GVarray.count);
Gad * readyGad = (Gad *) [GVarray objectAtIndex:0];
if (readyGad != nil)
[readyGad getImages];
NSLog(#"The value of the bool is %#\n", (readyGad.gdone ? #"YES" : #"NO"));
while (!readyGad.gdone) {
[NSThread sleepForTimeInterval:2.0];
[readyGad checkImages];
NSLog(#"The value of the readyGad.gdone is %#\n", (readyGad.gdone ? #"YES" : #"NO"));
}
rstop = NO;
while (!rstop) {
NSLog(#"The value of rstop in while is %#\n", (rstop ? #"YES" : #"NO"));
[self rotateGames];
stop = NO;
while (!stop) {
[self gameAction];
[self paint];
dispatch_async(dispatch_get_main_queue(), ^{
[self setNeedsLayout]; //I have also tried self.layer
[self setNeedsDisplay]; //I have also tried self.layer
});
//These are various timers for CALayer action
[NSThread sleepForTimeInterval:stime];
rtime = (rtime +runGad.gslp);
ltime += runGad.gslp;
jtime += runGad.gslp;
vtime += runGad.gslp;
ftime += runGad.gslp;
ttime += runGad.gslp;
Stime += runGad.gslp;
NSLog(#"After Thread Sleep rtime + gslp %f ", rtime);
if ((runTime += runGad.gslp) >= runGad.grun) {
stop = YES;
}
}
stop = NO;
}
});
}
I thank you for your time.
In iOS any UI updating code must be performed in the main thread. You cannot use GCD (unless its running on the mainQueue) or performSelectorInBackground to update the UI.
You can update your data and do IO on background threads, but when you have the data loaded and you want to display it you must switch back to the main thread.
Trying to do otherwise will sometimes work, sometimes not, or crash your app.
The main thread owns UI updates in iOS.
Also when it comes to doing the work on the main thread you have a few options, you can queue a block up with performSelectorOnMainThread
or you can send a block to the main thread GCD queue, sometimes you may need to play with dispatch_async vs dispatch_sync on the main thread if you use GCD they dont both work in every situation. performSelectorInMainthread seems to be more reliable than GCDs main thread queue.
ymmv

NSOperation: addsubview in the main thread and slowness

I have implemented the following NSOperation, to draw N custom views
- (void)main {
for (int i=0; i<N; i++) {
<< Alloc and configure customView #i >>
//(customView is a UIView with some drawing code in drawrect)
[delegate.view addSubview:customView];
}
NSLog(#"Operation completed");
}
in the drawRect method of the customView I have
- (void)drawRect {
<<Drawing code>>
NSLog(#"Drawed");
delegate.drawedViews++;
if (delegate.drawedViews==VIEWS_NUMBER) {
[delegate allViewsDrawn];
}
}
So the delegate get the notification when all the views are drawn.
The problem is that after the "Operation completed" log it takes about 5 seconds before I can see the first "Drawed" log.
Why is this happening? And generally speaking, how should I behave in order to find out which line of code is taking so much time being executed?
------ EDIT ------
Sometimes (like 1 out of 10 times) I was getting crashes doing this because I shouldn't call addsubview from the NSOperation since it is not thread-safe. So I changed it to:
[delegate.view performSelectorOnMainThread:#selector(addSubview:) withObject:customView waitUntilDone:NO];
Now I don't have crashes anymore, but the process takes a very long time to be executed! Like 5 times more than before.
Why is it so slow?
To make things work properly we need to forget about NSOperation and use this "trick"
dispatch_queue_t main_queue = dispatch_get_main_queue();
dispatch_async(main_queue, ^{
[self createCustomViews];
dispatch_async(main_queue, ^{
[self addAnotherCustomViewToView];
});
});

Resources