Binding Lua to Ada in win32 (xp,vista,etc.)? - binding

There is only one public library for binding Lua to Ada I have found (http://coreland.ath.cx/code/lua-ada), but how can it be used on a Windows platform? What do I need to use in my ada-project to get lua.ads.adb libraries defined in project-files working properly?
I tried to put lua sources in my ada-project directory befory compiling but that does nothing - GNAT raises an error like undefined reference to <c++ function>.
.

Windows doesn't seem to be on Lua-Ada's list of supported platforms. Still, the bindings ought to be somewhat portable to other Gnat platforms. You would need to get hold of a Windows Lua library (most likely a DLL) and graft the two together somehow though.
It's doable - I did something similar with Clips once. However, anyone doing this is going to need to be (or become) quite conversant with the C/C++ linker, Mingwin's support for Windows libraries (typically through DLLs), and how Ada interfaces to C linkages work.

Only by testing and testing once more I found how to bind safely Lua.
First of all is to unpack lua-ext.c from Ada-Lua package and all Lua-sources to main Ada-project directory. Then renaming lua.c to lual.c (or something equal) to eliminate error with same object-file name ('lua.ads->lua.o | lua.c->lua.o'). The last one is to turn on C-compiler in GNAT. It could be done via "Project - Edit project properties - Languages".
That's all I made to have my lua-files work with Ada-program.
P.S. To turn on all available Lua-libraries in Ada-program should be called those two procedures:
Lua.Lib.Open_Base(Lua.State_t); -- this will append to _G all main functions
Lua.Lib.Open_Libs(Lua.State_t); -- this will append math, string, package, etc. libraries

Related

How do I Make an executable Lua script using srlua?

My main goal is to either make my lua file into executable or make it into a bite code.
preferably both of them.
I am trying srlua,but in readme file it tells me to do:
"For Windows, you need to create srlua.exe and glue.exe first. Then for each
Lua program that you want to turn into a stand-alone program, do
glue srlua.exe prog.lua prog.exe
Of course, you can use any name instead of prog.exe."
and when I am trying to compile it using codebluck to get(srlua.exe),I get this :
and what dose it mean by this?
glue srlua.exe prog.lua prog.exe
where should I type that it.
Thanks in advance.
Type it into your shell. Once you have the binary of srlua, that takes "prog.lua" and glues it to "srlua.exe" making "prog.exe". Of course, you need glue as well. You can get an srlua binary and a glue binary for Lua 5.1 here. http://www.tecgraf.puc-rio.br/~lhf/ftp/lua/#srlua

Delphi - unmangle names in BPL's

Is it possible to unmangle names like these in Delphi?
If so, where do I get more information?
Example of an error message where it cannot find a certain entry in the dbrtl100.bpl
I want to know which exact function it cannot find (unit, class, name, parameters, etc).
---------------------------
myApp.exe - Entry Point Not Found
---------------------------
The procedure entry point #Dbcommon#GetTableNameFromSQLEx$qqrx17System#WideString25Dbcommon#IDENTIFIEROption could not be located in the dynamic link library dbrtl100.bpl.
---------------------------
OK
---------------------------
I know it is the method GetTableNameFromSQLEx in the Dbcommon unit (I have Delphi with the RTL/VCL sources), but sometimes I bump into apps where not all code is available for (yes, clients should always buy all the source code for 3rd party stuff, but sometimes they don't).
But say this is an example for which I do not have the code, or only the interface files (BDE.INT anyone?)
What parameters does it have (i.e. which potential overload)?
What return type does it have?
Is this mangling the same for any Delphi version?
--jeroen
Edit 1:
Thanks to Rob Kennedy: tdump -e dbrtl100.bpl does the trick. No need for -um at all:
C:\WINDOWS\system32>tdump -e dbrtl100.bpl | grep GetTableNameFromSQLEx
File STDIN:
00026050 1385 04AC __fastcall Dbcommon::GetTableNameFromSQLEx(const System::WideString, Dbcommon::IDENTIFIEROption)
Edit 2:
Thanks to TOndrej who found this German EDN article (English Google Translation).
That article describes the format pretty accurately, and it should be possible to create some Delphi code to unmangle this.
Pitty that the website the author mentions (and the email) are now dead, but good to know this info.
--jeroen
There is no function provided with Delphi that will unmangle function names, and I'm not aware of it being documented anywhere. Delphi in a Nutshell mentions that the "tdump" utility has a -um switch to make it unmangle symbols it finds. I've never tried it.
tdump -um -e dbrtl100.bpl
If that doesn't work, then it doesn't look like a very complicated scheme to unmangle yourself. Evidently, the name starts with "#" and is followed by the unit name and function name, separated by another "#" sign. That function name is followed by "$qqrx" and then the parameter types.
The parameter types are encoded using the character count of the type name followed by the same "#"-delimited format from before.
The "$" is necessary to mark the end of the function name and the start of the parameter types. The remaining mystery is the "qqrx" part. That's revealed by the article Tondrej found. The "qqr" indicates the calling convention, which in this case is register, a.k.a. fastcall. The "x" applies to the parameter and means that it's constant.
The return type doesn't need to be encoded in the mangled function name because overloading doesn't consider return types anyway.
Also see this article (in German).
I guess the mangling is probably backward-compatible, and new mangling schemes are introduced in later Delphi versions for new language features.
If you have C++Builder, check out $(BDS)\source\cpprtl\Source\misc\unmangle.c - it contains the source code for the unmangling mechanism used by TDUMP, the debugger and the linker. (C++Builder and Delphi use the same mangling scheme.)
From the Delphi 2007 source files:
function GetTableNameFromSQLEx(const SQL: WideString; IdOption: IDENTIFIEROption): WideString;
This seems to be the same version, since I also have the same .BPL in my Windows\System32 folder.
Source can be found in [Program Files folders]\CodeGear\RAD Studio\5.0\source\Win32\db
Borland/Codegear/Embarcadero has used this encoding for a while now and never gave many details about the .BPL format. I've never been very interested in them since I hate using runtime libraries in my projects. I prefer to compile them into my projects, although this will result in much bigger executables.

How can I tell if a module is being called dynamically or statically?

How can I tell if a module is being called dynamically or statically?
If you are operating on z/OS, you can accomplish this, but it is non-trivial.
First, you must trace up the save area chain and use CSVQUERY to find out which program owns each save area. Every other program will be a Cobol runtime module, like IGZCPAC. Under IMS, CICS, TSO, et al, those modules might be different. That is the easy part.
Once you know who owns all the relevant save areas, you can use the OS LOADER / BINDER / LINKER utilities to discover what artifacts are in the same modules. This is the non-easy part.
The ONLY way is to look at the output of the linkage editor (IEWL) or the load module itself. If the module is being called DYNAMICALLY then it will not exist in the main module, if it is being called STATICALLY then it will be seen in the load module. Calling a working storage variable, containing a program name, does not make a DYNAMIC call. This type of calling is known as IMPLICITE calling as the name of the module is implied by the contents of the working storage variable. Calling a program name literal.
Calling a working storage variable,
containing a program name, does not
make a DYNAMIC call.
Yes it does. Call variablename is always DYNAMIC.
Call 'literal' is dynamic or static according to the DYNAM/NODYNAM compiler option.
Caveat: This applies for IBM mainframe COBOL and I believe it is also part of the standard. It may not apply to other non-standard versions of COBOL.
For Micro Focus COBOL statically linking is controlled via call-convention on the call (bit 3) or via the compiler directive LITLINK.
When linking statically the case of the program-id/entry-point and the call itself is important, so you may want to ensure it is exact and use the CASE directive.
The reverse of LITLINK directive is the NOLITLINK directive or a call-convention without bit 3 set!
On Windows you can see the exported symbols in your .dll by using the "dumpbin /exports" utility and on Unix via the 'nm' utility.
A import .lib for the .dll created via "cbllink" can be created by using the '-K'command line option on cbllink.
Look at the call statement. If the called program is described in a literal then it's a static call. It's called a dynamic call if the called program is determined at runtime:
* Static call
call "THEPROGRAM"
* Dynamic call
call wsProgramName

statically analysing Lua code for potential errors

I'm using a closed-source application that loads Lua scripts and allows some customization through modifying these scripts. Unfortunately that application is not very good at generating useful log output (all I get is 'script failed') if something goes wrong in one of the Lua scripts.
I realize that dynamic languages are pretty much resistant to static code analysis in the way C++ code can be analyzed for example.
I was hoping though, there would be a tool that runs through a Lua script and e.g. warns about variables that have not been defined in the context of a particular script.
Essentially what I'm looking for is a tool that for a script:
local a
print b
would output:
warning: script.lua(1): local 'a' is not used'
warning: script.lua(2): 'b' may not be defined'
It can only really be warnings for most things but that would still be useful! Does such a tool exist? Or maybe a Lua IDE with a feature like that build in?
Thanks, Chris
Automated static code analysis for Lua is not an easy task in general. However, for a limited set of practical problems it is quite doable.
Quick googling for "lua lint" yields these two tools: lua-checker and Lua lint.
You may want to roll your own tool for your specific needs however.
Metalua is one of the most powerful tools for static Lua code analysis. For example, please see metalint, the tool for global variable usage analysis.
Please do not hesitate to post your question on Metalua mailing list. People there are usually very helpful.
There is also lua-inspect, which is based on metalua that was already mentioned. I've integrated it into ZeroBrane Studio IDE, which generates an output very similar to what you'd expect. See this SO answer for details: https://stackoverflow.com/a/11789348/1442917.
For checking globals, see this lua-l posting. Checking locals is harder.
You need to find a parser for lua (should be available as open source) and use it to parse the script into a proper AST tree. Use that tree and a simple variable visibility tracker to find out when a variable is or isn't defined.
Usually the scoping rules are simple:
start with the top AST node and an empty scope
item look at the child statements for that node. Every variable declaration should be added in the current scope.
if a new scope is starting (for example via a { operator) create a new variable scope inheriting the variables in the current scope).
when a scope is ending (for example via } ) remove the current child variable scope and return to the parent.
Iterate carefully.
This will provide you with what variables are visible where inside the AST. You can use this information and if you also inspect the expressions AST nodes (read/write of variables) you can find out your information.
I just started using luacheck and it is excellent!
The first release was from 2015.

Ant (or NAnt) in Lisp

In his article The Nature of Lisp, Slava Akhmechet introduces people to lisp by using Ant/NAnt as an example. Is there an implementation of Ant/NAnt in lisp? Where you can use actual lisp code, instead of xml, for defining things? I've had to deal with creating additions to NAnt, and have wished for a way to bypass the xml system in the way Slava shows could be done.
Ant is a program that interprets commands written in some XML language. You can, as justinhj mentioned in his answer use some XML parser (like the mentioned XMLisp) and convert the XML description in some kind of Lisp data and then write additional code in Lisp. You need to reimplement also some of the Ant interpretation.
Much of the primitive stuff in Ant is not needed in Lisp. Some file operations are built-in in Lisp (delete-file, rename-file, probe-file, ...). Some are missing and need to be implemented - alternative you can use one of the existing libraries. Also note that you can LOAD Lisp files into Lisp and execute code - there is also the REPL - so it comes already with an interactive frontend (unlike Java).
Higher level build systems in Common Lisp usually are implementing an abstraction called 'SYSTEM'. There are several of those. ASDF is a popular choice, but there are others. A system has subsystems and files. A system has also a few options. Its components also have options. A system has either a structural description of the components, a description of the dependencies, or a kind descriptions of 'actions' and their dependencies. Typically these things are implemented in an object-oriented way and you can implement 'actions' as Lisp (generic) functions. Lisp also brings functions like COMPILE-FILE, which will use the Lisp compiler to compile a file. If your code has, say, C files - you would need to call a C compiler - usually through some implementation specific function that allows to call external programs (here the C compiler).
As, mentioned by dmitry-vk, ASDF is a popular choice. LispWorks provides Common Defsystem. Allegro CL has their own DEFSYSTEM. Its DEFSYSTEM manual describes also how to extend it.
All the Lisp solution are using some kind of Lisp syntax (not XML syntax), usually implemented by a macro to describe the system. Once that is read into Lisp, it turns into a data representation - often with CLOS instances for the system, modules, etc.. The actions then are also Lisp functions. Some higher-order functions then walk over the component graph/tree and execute actions of necessary. Some other tools walk over the component graph/tree and return a representation for actions - which is then a proposed plan - the user then can let Lisp execute the whole plan, or parts of the plan.
On a Lisp Machine a simple system description looks like this:
(sct:defsystem scigraph
(:default-pathname "sys:scigraph;"
:required-systems "DWIM")
(:serial "package" "copy" "dump" "duplicate" "random"
"menu-tools" "basic-classes" "draw" "mouse"
"color" "basic-graph" "graph-mixins" "axis"
"moving-object" "symbol" "graph-data" "legend"
"graph-classes" "present" "annotations" "annotated-graph"
"contour" "equation" "popup-accept" "popup-accept-methods"
"duplicate-methods" "frame" "export" "demo-frame"))
Above defines a system SCIGRAPH and all files should be compiled and load in serial order.
Now I can see what the Lisp Machine would do to update the compiled code:
Command: Compile System (a system [default Scigraph]) Scigraph (keywords)
:Simulate (compiling [default Yes]) Yes
The plan for constructing Scigraph version Newest for the Compile
operation is:
Compile RJNXP:>software>scigraph>scigraph>popup-accept-methods.lisp.newest
Load RJNXP:>software>scigraph>scigraph>popup-accept-methods.ibin.newest
It would compile one file and load it - I have the software loaded and changed only this file so far.
For ASDF see the documentation mentioned on the CLIKI page - it works a bit different.
Stuart Halloway's upcoming book Programming Clojure goes through the construction of Lancet throughout the book as an example app. Lancet is a Clojure build system which (optionally) integrates directly with Ant. Source code and examples are available.
If all you want to do is generate Ant XML files using Lisp code, you could use something like clj-html for Clojure or CL-WHO for Common Lisp. Generating XML from Lisp s-exps is fun and easy.
Common Lisp's ASDF (Another System Definition Facility) is analogous to Make/Ant (but not a full analogue — it is aimed at building lisp programs, not generic systems like make or ant). It is extensible with Lisp code (subclassing systems, components, adding operations to systems). E.g., there is an asdf-ecs extensions that allows including (and compiling) C source files into system.
Perhaps you could define things in lisp and convert them to XML at the point you pass them to NAnt.
Something like XMLisp makes it easier to go back and forth between the two representations.
Edit: Actually, xml-emitter would make more sense.

Resources