Can the lock function be used to implement thread-safe enumeration? - f#

I'm working on a thread-safe collection that uses Dictionary as a backing store.
In C# you can do the following:
private IEnumerable<KeyValuePair<K, V>> Enumerate() {
if (_synchronize) {
lock (_locker) {
foreach (var entry in _dict)
yield return entry;
}
} else {
foreach (var entry in _dict)
yield return entry;
}
}
The only way I've found to do this in F# is using Monitor, e.g.:
let enumerate() =
if synchronize then
seq {
System.Threading.Monitor.Enter(locker)
try for entry in dict -> entry
finally System.Threading.Monitor.Exit(locker)
}
else seq { for entry in dict -> entry }
Can this be done using the lock function? Or, is there a better way to do this in general? I don't think returning a copy of the collection for iteration will work because I need absolute synchronization.

I don't think that you'll be able to do the same thing with the lock function, since you would be trying to yield from within it. Having said that, this looks like a dangerous approach in either language, since it means that the lock can be held for an arbitrary amount of time (e.g. if one thread calls Enumerate() but doesn't enumerate all the way through the resulting IEnumerable<_>, then the lock will continue to be held).
It may make more sense to invert the logic, providing an iter method along the lines of:
let iter f =
if synchronize then
lock locker (fun () -> Seq.iter f dict)
else
Seq.iter f dict
This brings the iteration back under your control, ensuring that the sequence is fully iterated (assuming that f doesn't block, which seems like a necessary assumption in any case) and that the lock is released immediately thereafter.
EDIT
Here's an example of code that could hold the lock forever.
let cached = enumerate() |> Seq.cache
let firstFive = Seq.take 5 cached |> Seq.toList
We've taken the lock in order to start enumerating through the first 5 items. However, we haven't continued through the rest of the sequence, so the lock won't be released (maybe we would enumerate the rest of the way later based on user feedback or something, in which case the lock would finally be released).
In most cases, correctly written code will ensure that it disposes of the original enumerator, but there's no way to guarantee that in general. Therefore, your sequence expressions should be designed to be robust to only being enumerated part way. If you intend to require your callers to enumerate the collection all at once, then forcing them to pass you the function to apply to each element is better than returning a sequence which they can enumerate as they please.

I agree with kvb that the code is suspicious and that you probably don't want to hold the lock. However, there is a way to write the locking in a more comfortable way using the use keyword. It's worth mentioning it, because it may be useful in other situations.
You can write a function that starts holding a lock and returns IDisposable, which releases the lock when it is disposed:
let makeLock locker =
System.Threading.Monitor.Enter(locker)
{ new System.IDisposable with
member x.Dispose() =
System.Threading.Monitor.Exit(locker) }
Then you can write for example:
let enumerate() = seq {
if synchronize then
use l0 = makeLock locker
for entry in dict do
yield entry
else
for entry in dict do
yield entry }
This is essentially implementing C# like lock using the use keyword, which has similar properties (allows you to do something when leaving the scope). So, this is much closer to the original C# version of the code.

Related

Creating an 'add' computation expression

I'd like the example computation expression and values below to return 6. For some the numbers aren't yielding like I'd expect. What's the step I'm missing to get my result? Thanks!
type AddBuilder() =
let mutable x = 0
member _.Yield i = x <- x + i
member _.Zero() = 0
member _.Return() = x
let add = AddBuilder()
(* Compiler tells me that each of the numbers in add don't do anything
and suggests putting '|> ignore' in front of each *)
let result = add { 1; 2; 3 }
(* Currently the result is 0 *)
printfn "%i should be 6" result
Note: This is just for creating my own computation expression to expand my learning. Seq.sum would be a better approach. I'm open to the idea that this example completely misses the value of computation expressions and is no good for learning.
There is a lot wrong here.
First, let's start with mere mechanics.
In order for the Yield method to be called, the code inside the curly braces must use the yield keyword:
let result = add { yield 1; yield 2; yield 3 }
But now the compiler will complain that you also need a Combine method. See, the semantics of yield is that each of them produces a finished computation, a resulting value. And therefore, if you want to have more than one, you need some way to "glue" them together. This is what the Combine method does.
Since your computation builder doesn't actually produce any results, but instead mutates its internal variable, the ultimate result of the computation should be the value of that internal variable. So that's what Combine needs to return:
member _.Combine(a, b) = x
But now the compiler complains again: you need a Delay method. Delay is not strictly necessary, but it's required in order to mitigate performance pitfalls. When the computation consists of many "parts" (like in the case of multiple yields), it's often the case that some of them should be discarded. In these situation, it would be inefficient to evaluate all of them and then discard some. So the compiler inserts a call to Delay: it receives a function, which, when called, would evaluate a "part" of the computation, and Delay has the opportunity to put this function in some sort of deferred container, so that later Combine can decide which of those containers to discard and which to evaluate.
In your case, however, since the result of the computation doesn't matter (remember: you're not returning any results, you're just mutating the internal variable), Delay can just execute the function it receives to have it produce the side effects (which are - mutating the variable):
member _.Delay(f) = f ()
And now the computation finally compiles, and behold: its result is 6. This result comes from whatever Combine is returning. Try modifying it like this:
member _.Combine(a, b) = "foo"
Now suddenly the result of your computation becomes "foo".
And now, let's move on to semantics.
The above modifications will let your program compile and even produce expected result. However, I think you misunderstood the whole idea of the computation expressions in the first place.
The builder isn't supposed to have any internal state. Instead, its methods are supposed to manipulate complex values of some sort, some methods creating new values, some modifying existing ones. For example, the seq builder1 manipulates sequences. That's the type of values it handles. Different methods create new sequences (Yield) or transform them in some way (e.g. Combine), and the ultimate result is also a sequence.
In your case, it looks like the values that your builder needs to manipulate are numbers. And the ultimate result would also be a number.
So let's look at the methods' semantics.
The Yield method is supposed to create one of those values that you're manipulating. Since your values are numbers, that's what Yield should return:
member _.Yield x = x
The Combine method, as explained above, is supposed to combine two of such values that got created by different parts of the expression. In your case, since you want the ultimate result to be a sum, that's what Combine should do:
member _.Combine(a, b) = a + b
Finally, the Delay method should just execute the provided function. In your case, since your values are numbers, it doesn't make sense to discard any of them:
member _.Delay(f) = f()
And that's it! With these three methods, you can add numbers:
type AddBuilder() =
member _.Yield x = x
member _.Combine(a, b) = a + b
member _.Delay(f) = f ()
let add = AddBuilder()
let result = add { yield 1; yield 2; yield 3 }
I think numbers are not a very good example for learning about computation expressions, because numbers lack the inner structure that computation expressions are supposed to handle. Try instead creating a maybe builder to manipulate Option<'a> values.
Added bonus - there are already implementations you can find online and use for reference.
1 seq is not actually a computation expression. It predates computation expressions and is treated in a special way by the compiler. But good enough for examples and comparisons.

F# seq behavior

I'm a little baffled about the inner work of the sequence expression in F#.
Normally if we make a sequential file reader with seq with no intentional caching of data
seq {
let mutable current = file.Read()
while current <> -1 do
yield current
}
We will end up with some weird behavior if we try to do some re-iterate or backtracking, My Idea of this was, since Read() is a function calling some mutable value we can't expect the output to be correct if we re-iterate. But then this behaves nicely even on boundary reading?
let Read path =
seq {
use fp = System.IO.File.OpenRead path
let buf = [| for _ in 0 .. 1024 -> 0uy |]
let mutable pos = 1
let mutable current = 0
while pos <> 0 do
if current = 0 then
pos <- fp.Read(buf, 0, 1024)
if pos > 0 && current < pos then
yield buf.[current]
current <- (current + 1) % 1024
}
let content = Read "some path"
We clearly use the same buffer to enhance performance, but assuming that we read the 1025 byte, it will trigger an update to the buffer, if we then try to read any byte with position < 1025 after we still get the correct output. How can that be and what are the difference?
Your question is a bit unclear, so I'll try to guess.
When you create a seq { }, you're essentially creating a state machine which will run only as far as it needs to. When you request the very first element from it, it'll start at the top and run until your first yield instruction. Then, when you request another value, it'll run from that point until the next yield, and so on.
Keep in mind that a seq { } produces an IEnumerable<'T>, which is like a "plan of execution". Each time you start to iterate the sequence (for example by calling Seq.head), a call to GetEnumerator is made behind the scenes, which causes a new IEnumerator<'T> to be created. It is the IEnumerator which does the actual providing of values. You can think of it in more classical terms as having an array over which you can iterate (an iterable or enumerable) and many pointers over that array, each of which are at different points in the array (many iterators or enumerators).
In your first code, file is most likely external to the seq block. This means that the file you are reading from is baked into the plan of execution; no matter how many times you start to iterate the sequence, you'll always be reading from the same file. This is obviously going to cause unpredictable behaviour.
However, in your second code, the file is opened as part of the seq block's definition. This means that you'll get a new file handle each time you iterate the sequence or, essentially, a new file handle per enumerator. The reason this code works is that you can't reverse an enumerator or iterate over it multiple times, not with a single thread at least.
(Now, if you were to manually get an enumerator and advance it over multiple threads, you'd probably run into problems very quickly. But that is a different topic.)

mutable state in collection

I'm pretty new to functional programming so this might be a question due to misconception, but I can't get my head around this - from an OOP point of view it seems so obvious...
scenario:
Assume you have an actor or micro-service like architecture approach where messages/requests are sent to some components that handle them and reply. Assume now, one of the components stores some of the data from the requests for future requests (e.g. it calculates a value and stores it in a cache so that the next time the same request occurs, no calculation is needed).
The data can be hold in memory.
question:
How do you in functional programming in general, and especially in f#, handle such a scenario? I guess a static dictionary is not a functional approach and I don't want to include any external things like data stores if possible.
Or more precise:
If an application creates data that will be used later in the processing again, where do we store the data?
example: You have an application that executes some sort of tasks on some initial data. First, you store the inital data (e.g. add it to a dictionary), then you execute the first task that does some processing based on a subset of the data, then you execute the second task that adds additional data and so on until all tasks are done...
Now the basic approach (from my understanding) would be to define the data and use the tasks as some sort of processing-chain that forward the processed data, like initial-data -> task-1 -> task-2 -> ... -> done
but that does not fit an architecture where getting/adding data is done message-based and asynchronous.
approach:
My initial approach was this
type Record = { }
let private dummyStore = new System.Collections.Concurrent.ConcurrentBag<Record>()
let search comparison =
let matchingRecords = dummyStore |> Seq.where (comparison)
if matchingRecords |> Seq.isEmpty
then EmptyFailedRequest
else Record (matchingRecords |> Seq.head)
let initialize initialData =
initialData |> Seq.iter (dummyStore.Add)
let add newRecord =
dummyStore.Add(newRecord)
encapsulated in a module that looks to me like an OOP approach.
After #Gustavo asked me to provide an example and considering his suggestion I've realized that I could do it like this (go one level higher to the place where the functions are actually called):
let handleMessage message store =
// all the operations from above but now with Seq<Record> -> ... -> Seq<Record>
store
let agent = MailboxProcessor.Start(fun inbox->
let rec messageLoop store = async{
let! msg = inbox.Receive()
let modifiedStore = handleMessage msg store
return! messageLoop modifiedStore
}
messageLoop Seq.empty
)
This answers the question for me well since it removed mutability and shared state at all. But when just looking at the first approach, I cannot think of any solution w/o the collection outside the functions
Please note that this question is in f# to explain the environment, the syntax etc. I don't want a solution that works because f# is multi-paradigm, I would like to get a functional approach for that.
I've read all questions that I could find on SO so far but they either prove the theoretical possibility or they use collections for this scenario - if duplicated please point me the right direction.
You can use a technique called memoization which is very common in FP.
And it consists precisely on keeping a dictionary with the calculated values.
Here's a sample implementation:
open System
open System.Collections.Concurrent
let getOrAdd (a:ConcurrentDictionary<'A,'B>) (b:_->_) k = a.GetOrAdd(k, b)
let memoize f =
let dic = new ConcurrentDictionary<_,_>()
getOrAdd dic f
Note that with memoize you can decorate any function and get a memoized version of it. Here's a sample:
let f x =
printfn "calculating f (%i)" x
2 * x
let g = memoize f // g is the memoized version of f
// test
> g 5 ;;
calculating f (5)
val it : int = 10
> g 5 ;;
val it : int = 10
You can see that in the second execution the value was not calculated.

F# observable filter with side effect

I have a number of events that are merged into one observable that executes some commands. If a command succeeded some result takes place. In addition, the command should be logged.
In terms of code, this looks like
let mevts = modifyingevents |> Observable.filter exec_action
|> Observable.add (fun action -> self.OutlineEdited <- true)
where the function exec_action results in some side effect such as editing a treeview. If this succeeded then the property OutlineEdited is set to true.
I was hoping to follow this with something like
mevts |> Observable.scan (fun log action -> action::log) []
but it turns out that Observable.filter is executed once for each subscribed observer. Meaning that the side effect will be repeated.
Can you please suggest another way to achieve the same result without having the exec_action executed twice? I am hoping to avoid having to use a mutable variable if possible.
This example ilustrates nicely the difference between the IObservable<'T> type (used in this example via the Observable module) and the F# type IEvent<'T> (and functions in Event module).
When you use observables, every subscriber creates a new chain of operations (so side-effects are executed once for every subscriber). If you use events then the state is shared and side-effects are executed just once (regardless of the number of subscribers). On the other hand, the events do not get garbage collected when you remove all subscribers from an event.
So, if you do not need the events to be removed when all subscribers are removed, you should get the behaviour you want just by using Event instead of Observable:
modifyingevents
|> Event.filter exec_action
|> Event.scan (fun log action -> action::log) []

How does F#'s async really work?

I am trying to learn how async and let! work in F#.
All the docs i've read seem confusing.
What's the point of running an async block with Async.RunSynchronously? Is this async or sync? Looks like a contradiction.
The documentation says that Async.StartImmediate runs in the current thread. If it runs in the same thread, it doesn't look very asynchronous to me... Or maybe asyncs are more like coroutines rather than threads. If so, when do they yield back an forth?
Quoting MS docs:
The line of code that uses let! starts the computation, and then the thread is suspended
until the result is available, at which point execution continues.
If the thread waits for the result, why should i use it? Looks like plain old function call.
And what does Async.Parallel do? It receives a sequence of Async<'T>. Why not a sequence of plain functions to be executed in parallel?
I think i'm missing something very basic here. I guess after i understand that, all the documentation and samples will start making sense.
A few things.
First, the difference between
let resp = req.GetResponse()
and
let! resp = req.AsyncGetReponse()
is that for the probably hundreds of milliseconds (an eternity to the CPU) where the web request is 'at sea', the former is using one thread (blocked on I/O), whereas the latter is using zero threads. This is the most common 'win' for async: you can write non-blocking I/O that doesn't waste any threads waiting for hard disks to spin around or network requests to return. (Unlike most other languages, you aren't forced to do inversion of control and factor things into callbacks.)
Second, Async.StartImmediate will start an async on the current thread. A typical use is with a GUI, you have some GUI app that wants to e.g. update the UI (e.g. to say "loading..." somewhere), and then do some background work (load something off disk or whatever), and then return to the foreground UI thread to update the UI when completed ("done!"). StartImmediate enables an async to update the UI at the start of the operation and to capture the SynchronizationContext so that at the end of the operation is can return to the GUI to do a final update of the UI.
Next, Async.RunSynchronously is rarely used (one thesis is that you call it at most once in any app). In the limit, if you wrote your entire program async, then in the "main" method you would call RunSynchronously to run the program and wait for the result (e.g. to print out the result in a console app). This does block a thread, so it is typically only useful at the very 'top' of the async portion of your program, on the boundary back with synch stuff. (The more advanced user may prefer StartWithContinuations - RunSynchronously is kinda the "easy hack" to get from async back to sync.)
Finally, Async.Parallel does fork-join parallelism. You could write a similar function that just takes functions rather than asyncs (like stuff in the TPL), but the typical sweet spot in F# is parallel I/O-bound computations, which are already async objects, so this is the most commonly useful signature. (For CPU-bound parallelism, you could use asyncs, but you could also use TPL just as well.)
The usage of async is to save the number of threads in usage.
See the following example:
let fetchUrlSync url =
let req = WebRequest.Create(Uri url)
use resp = req.GetResponse()
use stream = resp.GetResponseStream()
use reader = new StreamReader(stream)
let contents = reader.ReadToEnd()
contents
let sites = ["http://www.bing.com";
"http://www.google.com";
"http://www.yahoo.com";
"http://www.search.com"]
// execute the fetchUrlSync function in parallel
let pagesSync = sites |> PSeq.map fetchUrlSync |> PSeq.toList
The above code is what you want to do: define a function and execute in parallel. So why do we need async here?
Let's consider something big. E.g. if the number of sites is not 4, but say, 10,000! Then There needs 10,000 threads to run them in parallel, which is a huge resource cost.
While in async:
let fetchUrlAsync url =
async { let req = WebRequest.Create(Uri url)
use! resp = req.AsyncGetResponse()
use stream = resp.GetResponseStream()
use reader = new StreamReader(stream)
let contents = reader.ReadToEnd()
return contents }
let pagesAsync = sites |> Seq.map fetchUrlAsync |> Async.Parallel |> Async.RunSynchronously
When the code is in use! resp = req.AsyncGetResponse(), the current thread is given up and its resource could be used for other purposes. If the response comes back in 1 second, then your thread could use this 1 second to process other stuff. Otherwise the thread is blocked, wasting thread resource for 1 second.
So even your are downloading 10000 web pages in parallel in an asynchronous way, the number of threads are limited to a small number.
I think you are not a .Net/C# programmer. The async tutorial usually assumes that one knows .Net and how to program asynchronous IO in C#(a lot of code). The magic of Async construct in F# is not for parallel. Because simple parallel could be realized by other constructs, e.g. ParallelFor in the .Net parallel extension. However, the asynchronous IO is more complex, as you see the thread gives up its execution, when the IO finishes, the IO needs to wake up its parent thread. This is where async magic is used for: in several lines of concise code, you can do very complex control.
Many good answers here but I thought I take a different angle to the question: How does F#'s async really work?
Unlike async/await in C# F# developers can actually implement their own version of Async. This can be a great way to learn how Async works.
(For the interested the source code to Async can be found here: https://github.com/Microsoft/visualfsharp/blob/fsharp4/src/fsharp/FSharp.Core/control.fs)
As our fundamental building block for our DIY workflows we define:
type DIY<'T> = ('T->unit)->unit
This is a function that accepts another function (called the continuation) that is called when the result of type 'T is ready. This allows DIY<'T> to start a background task without blocking the calling thread. When the result is ready the continuation is called allowing the computation to continue.
The F# Async building block is a bit more complicated as it also includes cancellation and exception continuations but essentially this is it.
In order to support the F# workflow syntax we need to define a computation expression (https://msdn.microsoft.com/en-us/library/dd233182.aspx). While this is a rather advanced F# feature it's also one of the most amazing features of F#. The two most important operations to define are return & bind which are used by F# to combine our DIY<_> building blocks into aggregated DIY<_> building blocks.
adaptTask is used to adapt a Task<'T> into a DIY<'T>.
startChild allows starting several simulatenous DIY<'T>, note that it doesn't start new threads in order to do so but reuses the calling thread.
Without any further ado here's the sample program:
open System
open System.Diagnostics
open System.Threading
open System.Threading.Tasks
// Our Do It Yourself Async workflow is a function accepting a continuation ('T->unit).
// The continuation is called when the result of the workflow is ready.
// This may happen immediately or after awhile, the important thing is that
// we don't block the calling thread which may then continue executing useful code.
type DIY<'T> = ('T->unit)->unit
// In order to support let!, do! and so on we implement a computation expression.
// The two most important operations are returnValue/bind but delay is also generally
// good to implement.
module DIY =
// returnValue is called when devs uses return x in a workflow.
// returnValue passed v immediately to the continuation.
let returnValue (v : 'T) : DIY<'T> =
fun a ->
a v
// bind is called when devs uses let!/do! x in a workflow
// bind binds two DIY workflows together
let bind (t : DIY<'T>) (fu : 'T->DIY<'U>) : DIY<'U> =
fun a ->
let aa tv =
let u = fu tv
u a
t aa
let delay (ft : unit->DIY<'T>) : DIY<'T> =
fun a ->
let t = ft ()
t a
// starts a DIY workflow as a subflow
// The way it works is that the workflow is executed
// which may be a delayed operation. But startChild
// should always complete immediately so in order to
// have something to return it returns a DIY workflow
// postProcess checks if the child has computed a value
// ie rv has some value and if we have computation ready
// to receive the value (rca has some value).
// If this is true invoke ca with v
let startChild (t : DIY<'T>) : DIY<DIY<'T>> =
fun a ->
let l = obj()
let rv = ref None
let rca = ref None
let postProcess () =
match !rv, !rca with
| Some v, Some ca ->
ca v
rv := None
rca := None
| _ , _ -> ()
let receiver v =
lock l <| fun () ->
rv := Some v
postProcess ()
t receiver
let child : DIY<'T> =
fun ca ->
lock l <| fun () ->
rca := Some ca
postProcess ()
a child
let runWithContinuation (t : DIY<'T>) (f : 'T -> unit) : unit =
t f
// Adapts a task as a DIY workflow
let adaptTask (t : Task<'T>) : DIY<'T> =
fun a ->
let action = Action<Task<'T>> (fun t -> a t.Result)
ignore <| t.ContinueWith action
// Because C# generics doesn't allow Task<void> we need to have
// a special overload of for the unit Task.
let adaptUnitTask (t : Task) : DIY<unit> =
fun a ->
let action = Action<Task> (fun t -> a ())
ignore <| t.ContinueWith action
type DIYBuilder() =
member x.Return(v) = returnValue v
member x.Bind(t,fu) = bind t fu
member x.Delay(ft) = delay ft
let diy = DIY.DIYBuilder()
open DIY
[<EntryPoint>]
let main argv =
let delay (ms : int) = adaptUnitTask <| Task.Delay ms
let delayedValue ms v =
diy {
do! delay ms
return v
}
let complete =
diy {
let sw = Stopwatch ()
sw.Start ()
// Since we are executing these tasks concurrently
// the time this takes should be roughly 700ms
let! cd1 = startChild <| delayedValue 100 1
let! cd2 = startChild <| delayedValue 300 2
let! cd3 = startChild <| delayedValue 700 3
let! d1 = cd1
let! d2 = cd2
let! d3 = cd3
sw.Stop ()
return sw.ElapsedMilliseconds,d1,d2,d3
}
printfn "Starting workflow"
runWithContinuation complete (printfn "Result is: %A")
printfn "Waiting for key"
ignore <| Console.ReadKey ()
0
The output of the program should be something like this:
Starting workflow
Waiting for key
Result is: (706L, 1, 2, 3)
When running the program note that Waiting for key is printed immidiately as the Console thread is not blocked from starting workflow. After about 700ms the result is printed.
I hope this was interesting to some F# devs
Lots of great detail in the other answers, but as I beginner I got tripped up by the differences between C# and F#.
F# async blocks are a recipe for how the code should run, not actually an instruction to run it yet.
You build up your recipe, maybe combining with other recipes (e.g. Async.Parallel). Only then do you ask the system to run it, and you can do that on the current thread (e.g. Async.StartImmediate) or on a new task, or various other ways.
So it's a decoupling of what you want to do from who should do it.
The C# model is often called 'Hot Tasks' because the tasks are started for you as part of their definition, vs. the F# 'Cold Task' models.
The idea behind let! and Async.RunSynchronously is that sometimes you have an asynchronous activity that you need the results of before you can continue. For example, the "download a web page" function may not have a synchronous equivalent, so you need some way to run it synchronously. Or if you have an Async.Parallel, you may have hundreds of tasks all happening concurrently, but you want them all to complete before continuing.
As far as I can tell, the reason you would use Async.StartImmediate is that you have some computation that you need to run on the current thread (perhaps a UI thread) without blocking it. Does it use coroutines? I guess you could call it that, although there isn't a general coroutine mechanism in .Net.
So why does Async.Parallel require a sequence of Async<'T>? Probably because it's a way of composing Async<'T> objects. You could easily create your own abstraction that works with just plain functions (or a combination of plain functions and Asyncs, but it would just be a convenience function.
In an async block you can have some synchronous and some async operations, so, for example, you may have a web site that will show the status of the user in several ways, so you may show if they have bills that are due shortly, birthdays coming up and homework due. None of these are in the same database, so your application will make three separate calls. You may want to make the calls in parallel, so that when the slowest one is done, you can put the results together and display it, so, the end result will be that the display is based on the slowest. You don't care about the order that these come back, you just want to know when all three are received.
To finish my example, you may then want to synchronously do the work to create the UI to show this information. So, at the end, you wanted this data fetched and the UI displayed, the parts where order doesn't matter is done in parallel, and where order matters can be done in a synchronous fashion.
You can do these as three threads, but then you have to keep track and unpause the original thread when the third one is finished, but it is more work, it is easier to have the .NET framework take care of this.

Resources